Fire Resistance And Non-Combustibility

Evaluation of Fire Resistance Levels: Techniques, Data and Results

Important Notice

This Report has been prepared for work commissioned by Fire Code Reform Centre Limited and has been released for information only.

The statements and conclusions of the Report are those of the author(s) and do not necessarily reflect the views of Fire Code Reform Centre Limited, its Board of Directors or Members.

Neither the authors, Fire Code Reform Centre Limited, nor the organisations and individuals that have contributed, financially or otherwise, to production of this document warrant or make any representation whatsoever regarding its use.

Acknowledgements

Since inception of the Fire Code Reform Research Program in 1994 the Australian Building Codes Board has been its principal financial contributor. Substantial funds have also been provided by Forest and Wood Products Research and Development Corporation and generous contributions have been received from a number of industrial and financial entities and individual donors.

The Board and management of Fire Code Reform Centre Limited acknowledge with sincere thanks receipt of all these financial contributions. The company also acknowledges the kind permission of the three major research organisations involved in this work for permission to reproduce and publish this document.

Comments

Comments on the content or other aspects of this document are always welcome and should be addressed to:- Fire Code Reform Centre Ltd, Suite 1201, $12^{\text {th }}$ Floor, 66 King St, Sydney, NSW 2000, Australia. Tel. No: +61 (2) 9262 4358. Fax No: +61 (2) 9260 4255.

Fire Code Reform Centre

PROJECT 3
FIRE RESISTANCE AND NON-COMBUSTIBILITY

PART 2
 EVALUATION OF FIRE RESISTANCE LEVELS: TECHNIQUES, DATA AND RESULTS

November 1999

COPYRIGHT © Fire Code Reform Centre Limited
Level 4 Rockliffs Chambers
50 King street, Sydney 2000
NSW AUSTRALIA

PROJECT 3
REQUIREMENTS FOR FIRE RESISTANCE AND NON-COMBUSTIBILITY

PART 2
EVALUATION OF FIRE RESISTANCE LEVELS:
TECHNIQUES, DATA AND RESULTS

DECEMBER 1999

EXECUTIVE SUMMARY TO REPORT

This document sets out the techniques, data used and results of FCRC Project 3.
Estimates of the fire resistance required for the range of buildings covered by the BCA have been developed, based on limited data. The data is inadequate to cover the range of situations that the BCA is expected to cover.

Tables in Appendix J provide a rational estimate of the FRLs required for many of the enclosures in buildings covered by the BCA. Many of the estimated FRLs are similar to those currently required by the BCA. However, many are also greater than those required by the BCA.

It is not recommended that FRLs in the BCA be increased as there is no indication in the fire record that the current FRLs are unsatisfactory.

Many factors that affect estimates of the severity of fires in enclosures. The FRLs in the BCA are necessarily conservative for the majority of situations. They are only appropriate for the more extreme situations on which that are based. Therefore determination of reduced FRLs by designers using appropriate estimation techniques should be facilitated. To not do so is equivalent to saying all structural members in each class of building shall be of a certain (very large) size, and that the normal method of structural design cannot be used.

Attention of readers is particularly drawn to the Appendices where detailed summaries of work undertaken in many areas are given.

TABLE OF CONTENTS

TABLE OF CONTENTS 1
1 INTRODUCTION 1
1.1 PURPOSE OF THIS REPORT 1
1.2 SUMMARY OF PART 1 1
1.2.1 Background 1
1.2.2 Performance Defined 1
1.2.3 Barrier Performance 2
1.2.4 Structural Performance 3
1.2.5 Quantifying Performance 3
2 CALCULATION OF REQUIRED FRLS 5
2.1 GENERAL 5
2.2 CALCULATION STEPS 5
2.3 COMMENT 5
3 DETERMINATION OF FIRE SEVERITY 6
3.1 GENERAL 6
3.2 PARAMETERS GOVERNING FIRE SEVERITY 6
3.3 APPROACHES CONSIDERED 6
3.4 CURRENT APPROACH 7
3.4.1 Philosophy 7
3.4.2 Fire Duration 8
3.4.3 Characteristic Fire Temperature 8
3.4.4 Small-Scale Experiments 9
3.5 CALCULATION OF FIRE RESISTANCE 9
3.6 EXISTING METHODS 10
3.7 OUTLINE OF PROPOSED PROCEDURE 10
3.8 DERIVING FRLS FROM PERFORMANCE LEVELS 11
4 CHARACTERISTIC FIRE ENCLOSURES 12
4.1 CLASSIFICATION OF OCCUPANCIES 12
4.2 CHARACTERISTIC FIRE ENCLOSURE DIMENSIONS 15
5 FIRE LOADS FOR OCCUPANCIES 17
5.1 SURVEYS 17
5.2 RECOMMENDED FIRE LOADS FOR BCA CLASSES 17
5.3 REVIEW OF FIGURES 17
6 VENTILATION FACTORS 19
6.1 GENERAL 19
6.2 SURVEY DATA 19
6.3 COMMENT 20
7 DETERMINATION OF EXPOSURE PERIODS 21
7.1 INTRODUCTION 21
7.2 ESCAPE TIMES 21
7.2.1 Data Available 21
7.3 FIRE BRIGADE ACCESS TIME 22
7.3.1 Application 22
7.3.2 Time Estimates 22
7.4 FIRE SEVERITY (BURNOUT TIME) 23
8 BARRIERS AND STRUCTURE 24
8.1 GENERAL 24
8.2 MODELS FOR BARRIER FAILURE 24
8.3 MATERIALS 25
8.4 CONSTRUCTION CHARACTERISTICS 25
8.5 BARRIER AND STRUCTURAL ELEMENTS PREDICTED PERFORMANCE 27
9 CALCULATION OF REQUIRED FRLS 28
9.1 INTRODUCTION 28
9.2 ESTIMATION OF FIRE SEVERITY 28
9.3 ESTIMATION OF FRLS 31
9.4 COMMENT 33
10 CONCLUSIONS 34

1 INTRODUCTION

1.1 PURPOSE OF THIS REPORT

The purpose of Fire Code Reform Centre Project 3 was to develop a rational methodology for the calculation of fire resistance levels, to apply it to the elements which require an FRL within the BCA, and on the basis of the results to make recommendations to ABCB as to how the BCA should be modified. The Part 1 report for this project outlined a methodology for the calculations to be carried out, which was developed starting from several assumed objectives for the role of fire resistance requirements within the BCA. This Part 2 report develops the methodology in detail, presents the calculation techniques used and gives the data which was been gathered for input to the calculations together with the calculations and resulting recommendations.

Because many of the terms used in discussing fire resistance are not well understood, or are used loosely, and some new ones have been defined for this project, a list of definitions which will be used throughout this report is given in Appendix A, together with the notation which is used. Defined terms are highlighted in the text where first used in bold typeface.

1.2 SUMMARY OF PART 1

The objectives of Project 3, as outlined in the Part 1 report, were:

- (To examine the basis of existing requirements for non-combustibility and fire resistance in the BCA^{1}.
- By considering likely fire severities, to establish the basis on which fire resistance levels should be specified to achieve the regulatory intent and objectives of the BCA.
- (To establish the levels of performance required for different methods of construction and occupancy categories.
- To establish the role of non-combustibility in delivering the fire-safety objectives.

Part 1 examined the basis for requirements for fire resistance identified on the basis of the existing BCA, the perceptions of the industry and the statistical evidence, that there was a case for review of fire resistance and how it is determined. In the process of rationalising these tasks a set of performance levels was defined that can be applied to all building elements that are currently required to have a fire resistance level. In this process the Part 1 report introduced a number of important concepts which it is worthwhile to review here.

Fire resistance requirements relate to construction that is required to function either as a barrier to smoke and/or fire, or as a structural element. The performance required of a barrier or structure is the maintenance of necessary attributes while exposed to a fire of a certain

[^0]intensity for a specified time. For barriers, the necessary attribute is their ability to resist the passage of smoke or fire, which is ultimately reflected in the FRL criteria for integrity and insulation. For structure the necessary attribute is stability under load, which is reflected in the FRL criterion for structural adequacy.

For the purposes of this report, a fire compartment has been defined as given in Appendix A.

The early work on providing solutions to the tasks posed by Project 3 involved the identification of a set of performance levels which barriers and structure must achieve.

For barriers, the performance levels described below apply to internal and to external barriers and will influence FRL criteria for integrity and insulation. The barrier system is composed of elements that provide protection from the effects of fire and would typically include walls, doors, floors/ceilings, roofs and windows.

Level 1: relates to barriers in place to limit the passage of smoke early in a fire. The duration for performance is the expected period of time in which people will reach a place of safety.

Level 2: relates to barriers which must survive exposure to fire to provide protection for escape routes. The duration for performance is the expected time in which people will reach a place of safety.

Level 3: relates to barriers which must survive exposure to fire to provide access for firefighters. The duration for performance is the expected time of arrival of the fire brigade plus the expected time for them to set up firefighting and rescue operations and stop the fire growth.

Level 4: relates to barriers which limit fire spread to a fire compartment. The duration for performance is the expected time of arrival of the fire brigade plus the expected time for them to set up firefighting and rescue operations and stop the fire growth.

Level 5: relates to barriers which are there to prevent fire spread where firefighting operations are significantly delayed or unsuccessful. The barriers are therefore required to survive burnout. Barriers requiring this level of performance are those which must survive even in the very unlikely event of no or ineffective fire brigade intervention.

In considering the Performance Levels proposed above, it is assumed that a barrier includes all of the structure required to maintain its effectiveness. A barrier also includes all openings through it. Therefore windows, doors, shafts, and shutters must achieve at least the same function as the barrier in which they are located, unless it can be shown that the barrier performance is not adversely affected by alternative arrangements.

The different functions and Performance Levels are indicated in Table 1.1.

In undertaking a similar study on performance of the structure expressed in terms of real fire response, it needs to be noted that fire does not simultaneously attack all structural elements, even when it may be said that the whole building became (eventually) involved in fire. Local failure of part of the structure may not lead to significant collapse, as loads may be redistributed through other elements not affected by the fire. Buildings have been seen to perform better than expected judged by simple single-element analysis. Therefore it is necessary to distinguish between critical structure and non-critical structure as defined in Appendix A.

Although the necessary attributes of barriers and load-bearing structures are different, performance is defined in terms of the same fire intensities and durations. It is assumed that smoke will have no impact on structure, and Level 1 may therefore be ignored.

Level 2: relates to the stability required of structure contributing to the proper functioning of escape routes, which will include all floors. The duration for performance is the expected time in which people will reach a place of safety.

Level 3: relates to the structural stability of structure required to provide access for firefighting. The duration for performance is the expected time of arrival of the fire brigade plus the expected time for them to set up firefighting and rescue operations and stop the fire growth.
(Level 4 is not relevant, since it deals with barriers exclusively.)
Level 5: relates to the behaviour and structural stability of critical elements to prevent collapse in the case of burnout.

From the above, it can be seen that performance levels can be found for any building element that is required to resist fire. It should not be assumed however, that the FRL for an element that is required to perform to Level 5 will be greater than that of an element that is required to perform to Level 3. The quantification of the FRL from the performance level will depend on the severity of the fire and on the time during which the element must continue to perform its intended function. Thus, for example, barriers protecting an escape path in a large building with long escape times might require higher FRLs than barriers in another part of the same building or in a different building that are required to perform to Level 4.

The severity of a fire (fire severity) may be thought of as a combination of the temperatures reached and the duration of those temperatures. Thus fire severity is can be thought of as a maximum temperature and the duration of high temperatures. This is dependent only on the fire. Fire severity is discussed further in Sections 3 and 9 and in Appendices H and I.

However, because of the levels of performance defined above for elements with different purposes, depending on the purpose (and thus level) a duration of exposure less than the duration of high temperatures might be appropriate. Thus the required duration of performance depends on the purpose (Level) of the element. (Determination of the durations is discussed further in Section 7.)

TABLE 1.1- Fires which challenge fire resistant barriers and structures

	0 0 0 0 0 0 0 0 0 0.0			
Protect people in escape routes from smoke from fire from collapse	2	2	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	
Limit fire spread			3	
Protect fire fighters from smoke from fire from collapse	3	3	4	
Protect neighbours from fire from collapse	5			5

hot smoke for escape duration
room fire for escape duration
compartment fire for fire access duration
compartment fire for fire access duration
burnout

5

2 CALCULATION OF REQUIRED FRLS

2.1 GENERAL

This section outlines the calculation steps that have been used in deducing the necessary fire resistance levels of barriers and elements of structure. As will become apparent in the report, a number of alternative approaches have been considered through the life of the project, and work has been undertaken to establish the data required as input to the various stages. The identification of relevant input data to the calculations and the gathering of such data has been an important part of this phase of the project.

The calculations have been undertaken for each occupancy in the BCA.

2.2 CALCULATION STEPS

The following steps were used for each occupancy:

- establish enclosure size(s), ventilation and fire load
- derive fire severities (maximum temperature and duration) based on enclosure size, ventilation and fire load
- for each fire severity determine the FRL required to ensure no failure for the duration required (for each of evacuation time, fire brigade control time and duration of high temperatures)

2.3 COMMENT

The above steps form the core of the approach outlined in this report. The calculations outlined represent a deterministic approach to the problem.

3 DETERMINATION OF FIRE SEVERITY

3.1 GENERAL

For the purposes of this project, it will be necessary to quantify fire severity, on an occupancy by occupancy basis, in order to be able to calculate the FRL values necessary to meet the performance Levels. In practice, fire severity is most usefully expressed in terms of a temperature-time curve to which an element will be exposed. Under the effects of this fire severity the element will required to survive for a time which is determined by the its role in the building. Clearly the greater the temperature reached in the fire, and the longer the period for which high temperatures are sustained, the more severe will be the fire.

3.2 PARAMETERS GOVERNING FIRE SEVERITY

The most important factors governing fire severity have been shown in the past to be fire load and ventilation in the enclosure of fire origin. Fire load is usually expressed in terms of the quantity of material available to burn. Most fires which pass flashover and enter the fully developed phase become ventilation controlled. In other words, the ventilation determines the amount of air that can reach the fire, thereby limiting its peak heat release rate. In addition to ventilation, enclosure size is important, particularly for large enclosures. How these aspects can be incorporated into a general fire severity model remains to be discussed in this document. The nature and quantity of the combustibles obviously vary with occupancy, as do the characteristic enclosure shape and ventilation characteristics (if such characteristic values exist). Assuming that they can be meaningfully defined these provide parameters for determining how FRL requirements should vary between different building uses.

It will be noted above that use is made of the term 'enclosure' rather than the 'compartment' of fire origin. A compartment is by definition bounded by fire resisting barriers; an enclosure simply represents the room in which the fire arises, which may, or in many instances may not, be a fire compartment. However, it is the influence of the enclosure which determines to some extent the early growth and development of the fire, and it is only when the immediate enclosure barriers fail that it becomes necessary to start to think in terms of the fire compartment. Many enclosures, whilst possibly not required to have fire resisting walls by regulation, may indeed have walls with inherent fire resisting properties for structural, insulation or acoustic reasons. The statistical surveys reported in Part 1 of this report suggested that a large proportion of fires are confined to the room of fire origin, but a very small proportion of those that have spread beyond the room of origin are confined to the compartment of fire origin.

It has become apparent that the total enclosed area serviced by a vent or opening is the important area, not simply the area of the individual rooms. The barriers and structure near the vent(s) (particularly at the upper level of the room) "see" the fire throughout the fire in the whole area, not just when it is in the enclosure nearest the vent.

3.3 APPROACHES CONSIDERED

Two approaches were considered in detail in the early stages of this project. The first was based on well established correlations which have been used for many years to generate fire temperature-time curves and to provide a means to calculate fire resistance through the
intermediary of a concept known as the t-equivalent. These correlations are generally based on fire load per unit area of the compartment, dimensions of the compartment and factors relating to the ventilation. However, it became apparent at an early stage that these correlations could not predict the results of recent experiments carried out by British Steel in the UK. These have demonstrated significant unforeseen effects, in particular non-uniformity of burning in the enclosure and extended times of burning in deep compartments.

The concept of t-equivalent was also considered but rejected. This concept is possibly useful in calculating the response of exposed steel to fire, where failure may be characterised by a critical temperature. But it is of less use with insulated steel, and other materials that require an extended period of exposure before failure. The usefulness of the t-equivalent concept has also been questioned by Law, who recommends that survival periods are calculated directly.

The review of existing calculation methods for fire severity fire resistance is given in Appendix B. Also included in Appendix B is a comprehensive review of the correlations to be found in the literature with respect to the prediction of enclosure temperature. Once again, these were not thought to be comprehensive enough for use in the present study.

The second approach considered was the adoption of a fire model to generate temperaturetime curves to characterise fire severity. The purpose was to generate automatically a set of temperature-time curves for use in the project on the basis of enclosure characteristics and fire load. Early progress involving the use of the model CFAST gave very promising results. However, later comparison with large-scale test data produced very poor agreement and results that were highly questionable physically in terms of the fire temperatures particularly those generated for high fire load fires. It was essential that a model should be able to generate the fire curves automatically: post optimisation of the results on a case by case basis was considered to be unsatisfactory. Similar problems occurred with other models tested.

3.4 CURRENT APPROACH

In the absence, as discussed above, of any certain way forward using simple correlations based on equivalent fire resistance, nor the possibility of using a fire model to generate the post-flashover fire severity, a decision was taken to review as much as possible of the available literature on large scale fully developed fires. The aim was to see whether or not it would be feasible to generate correlations that would give fairly simple but conservative techniques for the generation of fire temperature and duration. The literature survey revealed that there is not a great deal of data relating to fire experiments in large enclosures, and in most of these the fire load density was not high. There is a concentration of tests in enclosures about 3 to 4 m (roughly) square and about 2.4 to 3 m high. There are tests in larger enclosures but very few in large enclosures. The largest we are aware of were the British Steel tests in enclosures about 22 m deep by 6 m wide and 2.7 m high.

The results in the latter tests were of great interest in that the pattern of temperature-time curves generated within the enclosure showed clearly that though the combustible material was evenly spread throughout the compartment, and though it was all ignited simultaneously, the pattern of burning was far from even. It was apparent that burning in the early stages was concentrated at the end of the enclosure nearest the opening and that, as the fuel was consumed, the burning front moved back into the enclosure. The structural member closest to
the opening were exposed to the greatest level of fire severity, as they were receiving hot gases flowing towards the opening throughout the fire duration. In contrast those members furthest from the opening were exposed to the least level of fire severity in terms of the temperature and duration of the fire at that point.

It should be noted however that even these enclosures are not large compared with the dimensions of many of the enclosures considered to be relevant for many of the BCA building classes.

The data given in the literature was analysed to establish fire duration. It was observed that the fires exhibited growth periods that were highly variable, and decay periods also that changed from fire to fire, neither of which were thought to be of great significance in terms of the required fire resistance for barriers and structure. Therefore, a decision was taken to limit the measured duration of the fire to the time for which the maximum compartment temperature remained above $500^{\circ} \mathrm{C}$. Whilst being somewhat arbitrary, it was thought that structural materials would not be affected significantly below this temperature, either in the growth phase or the decay phase of the fire. It is of course perfectly possible to analyse the results with a different cutoff, so the approach does not lose its generality as a result of this choice. All of the variables recorded in the literature for the fires under consideration were noted.

An extensive search was conducted for a regression expression that accurately predicts the fire duration. The best fit that was obtained related fire duration to the total fire load, the opening width and the opening height. This is an interesting result. Conventionally it has been found or assumed that the duration of burnout is related to the fire load density, not to the total fire load as was found here.

As with all correlations, great care has to be exercised in their use. As noted above there is little data on deep compartments apart from the work conducted by British Steel, and there is no data on wide compartments (where the enclosure wall containing the opening is long in relation to the depth of the compartment). It seems entirely reasonable to assume (as in fact British Steel did) that a wide compartment behaves in a similar manner to a row of cubeshaped enclosures, this has not been demonstrated experimentally. In order to investigate qualitatively the behaviour of fires in enclosures that are far from cubic, a small-scale experimental programme has been set up, to be described below. It should be noted that, though initially included in the regression analysis, there was little effect of enclosure insulation on the enclosure temperatures (although there was some effect on the duration of high temperatures in some cases), even though this was varied in some of the experiments considered. This conclusion is in line with the analysis of Law, who also failed to see any affect in the comparison of a set of large-scale test data (some of which was the same data used in the current analysis).

A similar approach based on regression analysis of the temperature data obtained from the fire curves is currently being adopted. Clearly, it would be unduly conservative to describe a fire by its absolute maximum temperature, and a "average" maximum temperature for the
fully developed phase is being used to characterise the measured results, which will be used to predict characteristic temperatures for the fire severities under consideration.

The British Steel data, though compelling, is limited. A decision was taken therefore to undertake a very large set of small scale experiments the results of which could be included with the large scale experiments in deriving temperature-time correlations. These experiments were conducted mainly on enclosures of 300 mm and 600 mm wide x 300 mm high, and of varying depth up to 1500 mm . Some experiments were also conducted on wider enclosures 300 mm and 600 mm deep. The ventilation factor has been varied: the fire load (alcohol burning in trays) was maintained throughout. In addition several experiments in similar enclosure have been conducted with wood cribs as the fuel. These experiments are reported in more detail in Appendix H Calculation of Burnout Times.

The results of this small-scale programme have confirmed the results of the British Steel experiments. The burning zone progresses from the opening to the rear of the enclosure. The results suggest that it is correct to assume that a wide enclosure behaves like a row of narrower enclosures side-by-side. A regression study has been conducted using all of the available data. In the end though, although there is a very large number of small scale tests the large scale data dominate the final regression relationship.

3.5 CALCULATION OF FIRE RESISTANCE

To determine Fire Resistance Level, the period of survival in a test furnace is determined subject to a standard temperature-time curve. In Australia, the construction of the furnace and the shape of the temperature curve is determined by AS1530.4-1990. This Standard is identical to ISO 834:1975, which has been widely adopted throughout the world. There is a vast body of test data available from around the world that relates to the performance of building elements when subjected to these standard conditions. It is the purpose of the work of this project to ensure that these test results can still be used and to define the required performance of building elements ultimately in terms of these test results.

In a real fire situation the temperature history to which a building element is subjected is not the same as the standard curve and depends on the fire severity and duration of exposure. Fire severity of a post-flashover fire is related to the ventilation and thermal properties of the building. The time of exposure is related to the time for which the element must perform. In real fire situations, the temperature-time history which a building component is required to withstand depends on the building and occupant characteristics. The temperature in the standard furnace rises slowly in comparison to the rate of temperature rise achieved in real fire conditions. The furnace temperature is programmed to reach about $900^{\circ} \mathrm{C}$ in an hour. A rapidly developing fire in a small room could peak at temperatures in excess of $1000^{\circ} \mathrm{C}$ in less than 10 minutes from ignition, and could have burnt out in 20 minutes.

However unrepresentative the standard furnace may be, the range of data which has been derived from it over the years suggests that for the foreseeable future it will be highly desirable to rely upon its results for the regulation of barrier and structural performance in fire. The challenge of Part 2 of Project 3 is therefore two-fold. It is necessary on the one hand to generate fire severities which are representative of real fires. In the second place it is
necessary to translate these fire severities into fire resistance levels as measured in the standard test.

The challenge of translating real fire performance into performance in a furnace test has been become known as the calculation of "equivalent fire resistance" for the elements so exposed, and has received much attention in the literature. The following provides a review of the methods that have been developed. Some of these methods have been reviewed in more detail by Harmathy (1987).

3.6 EXISTING METHODS

Equivalent fire exposure is defined as that length of the heating period in a standard furnace test which gives the same critical effect on a structural element with respect to failure as the complete process of the compartment fire (Pettersson (1985)). A number of different methods have been used to assess equivalent fire exposure:

- equal temperature-time areas,
- equal temperature rises,
- normalised heat load concept, and
- equal strength criteria

Each of these techniques is discussed in detail in Appendix B of this report. These are all simplified techniques and each has its drawbacks in terms of failing to reflect the actual correspondence between performance as measured in a test and performance as observed in a fire. Ideally, the goal is to derive a correlation which when applied to an element of known fire resistance as measured in a furnace will generate the performance which will be expected under exposure to a real temperature-time curve. This is in many ways an unrealistic goal, and the fact that many researchers have resorted to the above simplified techniques is evidence in itself that no simple correlation is likely to emerge. There are a number of reasons why this is likely to be so. In the first instance, the measured fire resistance in a test and the performance in a fire are functions of complex interactions of heat transfer, both to and within the element, and physical properties of materials that change with temperature. There are affects of history in the sense that the properties of a material, or a composite, heated slowly to a given temperature (as in a test) will not necessarily be the same as those for the same material or composite heated rapidly (as in some fires). It is perhaps unrealistic, though for the present we will continue to do it, to expect that all elements giving 1 hour FRL will perform in the same way (or with the same degree of satisfaction) when exposed to real fires.

For the reasons outlined above, in the present project we have therefore abandoned the simplified methods available to us.

3.7 OUTLINE OF PROPOSED PROCEDURE

In this project use was made of the Barrier Model described in Section 8 which was developed for use in FCRC Project 4. This model permits building elements to be exposed to the fire severities generated by the method described above, for the durations specified in Section 8. Either the element will survive or it will fail. By varying the element parameters, elements that are predicted to just have the specified FRL can be developed for each type of element covered by the barrier models. The response of such elements to a range of idealised
but non-standard fires can be predicted. The response of sets of elements with FRL of 30, 45, $60,90,120$ and 180 minutes is tabulated and discussed further in Section 8.

3.8 DERIVING FRLS FROM PERFORMANCE LEVELS

Apart from the statistical review carried out and described in Part 1 of this report, further work on the Australian statistics has been carried out and is summarised in Appendix F.

4 CHARACTERISTIC FIRE ENCLOSURES

4.1 CLASSIFICATION OF OCCUPANCIES

The BCA requires that certain occupancies are divided into compartments by fire resisting walls. The BCA requirements are outlined below.

Table 4.1 Floor Area and Volume Limitations - BCA 1990/1996

1. Buildings that are not isolated

$$
\begin{array}{cl}
\text { Area }\left(m^{2}\right) & \text { Type of construction } \\
\text { Volume }\left(m^{3}\right) &
\end{array}
$$

Class 9b theatre or public hall without stage									$\frac{3,4,9,10}{3,12}$
Class 9b spectator stand 									
Class 9b other	$\begin{aligned} & 3000 \\ & 18000 \end{aligned}$	C	$\begin{array}{\|l\|} \hline 5500 \\ 33000 \\ \hline \end{array}$	B	$\begin{array}{\|l\|} \hline 8000 \\ 48000 \\ \hline \end{array}$	A	$\begin{aligned} & 8000 \\ & 48000 \end{aligned}$	A	3, 4, 10
	$\begin{array}{\|l\|} \hline 5500 \\ 33000 \\ \hline \end{array}$	B	$\begin{aligned} & 8000 \\ & 48000 \\ & \hline \end{aligned}$	A					
	$\begin{array}{\|l\|} \hline 8000 \\ 48000 \end{array}$	A							

2. Buildings that are isolated and protected with a sprinkler system and perimeter vehicular access

Rise in storeys	1	2	3	4 and more	Notes
Class 5	$\begin{array}{ll} \hline 18000 & \mathrm{C} \\ 108000 & \\ \hline \end{array}$	18000 C 108000	18000 B 108000	$\begin{array}{\|ll} \hline 18000 & \mathrm{~A} \\ 108000 & \\ \hline \end{array}$	4
Class 6	$\begin{array}{\|ll} \hline 18000 & \mathrm{C} \\ 108000 & \\ \hline \end{array}$	$\begin{array}{\|ll\|} \hline 18000 & \mathrm{C} \\ 108000 & \\ \hline \end{array}$	$\begin{array}{\|ll\|} \hline 18000 & B \\ 108000 & \\ \hline \end{array}$	$\begin{array}{\|ll\|} \hline 18000 & \mathrm{~A} \\ 108000 & \\ \hline \end{array}$	4,5
Class 7 Carpark	C	C	B	A	3, 11
Class 7 Other than carpark	$\begin{array}{ll} \hline 18000 & \mathrm{C} \\ 108000 & \\ \hline \end{array}$	18000 C 108000	18000 B 108000	$\begin{array}{\|ll} \hline 18000 & \mathrm{~A} \\ 108000 & \\ \hline \end{array}$	3, 4
Class 8 purpose-built					3, 4
Class purpose general	18000 C 108000	18000 C 108000	$\begin{array}{\|ll\|} \hline 18000 & B \\ 108000 & \\ \hline \end{array}$	18000 A 108000	3, 4
Class 9a other than patient-care areas	$\begin{array}{ll} \hline 18000 & \text { C } \\ 108000 & \\ \hline \end{array}$	$\begin{array}{ll} \hline 18000 & B \\ 108000 & \\ \hline \end{array}$	18000 A 108000	18000 A 108000	
Class 9a patient-care areas	Patient-care areas generally - fire-compartments not to exceed 2000. Ward areas - fire-compartments not to exceed 1000. smoke-compartments not to exceed 500. If patient-care/ward areas are less than 1000, smoke compartments must be also fire-compartments.				
Class 9b school					3, 4, 7
Class 9b disco or nightclub					3, 4, 10
Class 9b exhibition hall					3, 4, 6
Class 9b theatre or public hall with stage					3, 4, 8
Class 9b theatre or public hall without stage					3, 4, 9, 10
Class 9b spectator stand open					3, 12
Class 9b other	$\begin{array}{ll} \hline 18000 & \text { C } \\ 108000 & \\ \hline \end{array}$	$\begin{array}{ll} \hline 18000 & B \\ 108000 & \\ \hline \end{array}$	18000 108000 $\quad \mathrm{~A}$	18000 108000 A	3, 4, 10

3. Buildings of class 7 or 8 that are isolated, of not more than 2 storeys, protected by an open space not less than 18 m wide to $\mathbf{C 2 . 4 (a)}$ and by the detection and smoke-control systems of C2.3(a)(i)

Rise in storeys	1		2			Notes
Class 7 Carpark		C			C	3, 11
Class 7 Other than carpark	$\begin{array}{\|l\|} \hline 18000 \\ 108000 \\ \hline \end{array}$	C	$\begin{array}{\|l} \hline 18000 \\ 108000 \\ \hline \end{array}$		C	3, 4
Class 8 purpose-built						3, 4
$\begin{array}{lll}\begin{array}{lll}\text { Class } \\ \text { purpose }\end{array} & 8 & \text { general } \\ \end{array}$	$\begin{aligned} & \hline 18000 \\ & 108000 \end{aligned}$	C	$\begin{aligned} & \hline 18000 \\ & 108000 \end{aligned}$		C	3, 4

Continues next page.
4. Buildings that are isolated, protected with a sprinkler system and perimeter vehicular access and provided with a smoke-exhaust system or smoke-and-heat vents depending on ceiling height.

NOTES

1. Buildings of classes 2 or 3 are not subject to floor-area or volume limitations.
2. Class-4 parts are not subject to floor-area or volume limitations and derive their FRL requirements via C1.6 from the buildings that contain them.
3. The subdivisions listed in the original task description have been retained although the BCA does not presently discriminate so far as floor-area or volume limitations are concerned. Go to the general classification in each case.
4. Basements that aren't carparks, are of more than $2000 \mathrm{~m}^{2}$ and that aren't counted in the rise in storeys are subject to Table 2.2a page 13,751 .
5. In class-6 buildings, fire-compartments of more than $2000 \mathrm{~m}^{2}$ are subject to Table 2.2b, pages 13,752 and 13,753.
6. Exhibition halls of more than $2000 \mathrm{~m}^{2}$ are subject to Table 2.2b, page 13,753 . A distinction is made between floors of over $2000 \mathrm{~m}^{2}$ but less than $3500 \mathrm{~m}^{2}$ and those over $3500 \mathrm{~m}^{2}$.
7. A theatre or public hall that is a school-assembly, church or community hall and has a stage and back-stage area of more than $300 \mathrm{~m}^{2}$ is subject to Table 2.2b, page 13,754 .
8. A theatre or public hall that is not a school-assembly, church or community hall and has a stage and back-stage area of more than $200 \mathrm{~m}^{2}$ is subject to Table 2.2b, page 13,754.
9. In a theatre or public hall, including a lecture theatre and a cinema/auditorium complex but not including those already covered by notes 6,7 and 8 nor a school lecture theatre, a fire-compartment of more than $2000 \mathrm{~m}^{2}$ is subject to Table 2.2b, page 13,754.
10. In assembly buildings not already covered by notes 6, 7, 8 or 9 and excluding schools, a fire-compartment of more than 2000 m 2 is subject to Table 2.2b, page 13,755 .
11. Open-deck carparks and carparks with a Specification-E1.5 sprinkler system are not subject to floor-area or volume limitations.

Open spectator stands are not subject to floor-area or volume limitations. See also C1.7 about classification.

4.2 CHARACTERISTIC FIRE ENCLOSURE DIMENSIONS

For the reasons noted earlier, the fire may start in an enclosure which is not, or not intended to be, a fire compartment. Therefore a set of representative enclosures has to be derived for the purposes of carrying out analysis of fire severity which differ markedly from the above compartments dimensions. For each enclosure, the following data will be required:

Characteristic dimensions
Ventilation factor
Fire load
Since fires in large enclosures present more of a threat to barriers and structures than fires in small enclosures, the largest probable enclosure in each category will be taken to represent that category. The regression model proposed in this project can be used for enclosures $<$ (5 m x 22 m) with low ceilings, since this is the range of the available data. "Small" enclosures will therefore be those within this range of dimensions.

Table 4.2 Assumed Enclosure Sizes for BCA Classes of Buildings

For small, low enclosures (ceiling height $2.5 m-4 m$) the following characteristic dimensions are assumed:

Class 1b	$5 \mathrm{~m} \times 5 \mathrm{~m}$
Class 2	$5 \mathrm{~m} \times 20 \mathrm{~m}$
Class 3	$4 \mathrm{~m} \times 8 \mathrm{~m}$
Class 4	As Class 2
Class 5	$4 \mathrm{~m} \times 8 \mathrm{~m}$
Class 6	$5 \mathrm{~m} \times 20 \mathrm{~m}$
Class 7 - carpark	$5 \mathrm{~m} \times 20 \mathrm{~m}$
Class 7 - other	$5 \mathrm{~m} \times 20 \mathrm{~m}$
Class 8	$5 \mathrm{~m} \times 20 \mathrm{~m}$
Class 9a (wards)	$6 \mathrm{~m} \times 20 \mathrm{~m}$
Class 9b	$5 \mathrm{~m} \times 20 \mathrm{~m}$

For large rooms with low ceilings, the following characteristic dimensions are assumed:

Class 1b	-
Class 2	-
Class 3 - ballroom	$30 \mathrm{~m} \times 50 \mathrm{~m}$
Class 4	-
Class 5	$60 \mathrm{~m} \times 60 \mathrm{~m}$
Class 6	$50 \mathrm{~m} \times 100 \mathrm{~m}$
Class 7 - carpark	$50 \mathrm{~m} \times 100 \mathrm{~m}$
Class 7 - other	$50 \mathrm{~m} \times 100 \mathrm{~m}$
Class 8	$50 \mathrm{~m} \times 100 \mathrm{~m}$
Class 9a	-
Class 9b	$30 \mathrm{~m} \times 50 \mathrm{~m}$

The enclosure size was expanded to include the additional enclosures that might contain combustible material that could reasonably be expected to be open to the enclosure of fire origin. For example, apartments were assumed to have all rooms open to one another, but not to be open to the corridor beyond. Clearly these choices are somewhat arbitrary and are open to debate.
<< This page is intentionally blank >>

5 FIRE LOADS FOR OCCUPANCIES

5.1 SURVEYS

The fire load (quantity of combustible materials) is one of the main factors that may influence the severity of a fire. A number of surveys of fire load for various occupancies have been conducted based on data collected in various overseas countries. The results are summarised in Appendix C to this report. Proposed fire loads for the building classifications of the Building Code of Australia are tabulated based on these surveys, and are listed below in Table 5.1.

Total fire loads consist of permanent (or fixed) fire loads and variable (or movable) fire loads. Permanent fire loads are those combustible materials which have a negligible variation during the service life of a structure and comprise building materials including the load-bearing structure, linings, finishes, and permanently installed devices. Variable fire loads are all combustible materials that may vary during the service life of a structure, for example, furniture, storage goods, and movable equipment.

In the following data surveyed, the fire load was expressed in terms of fire load density: fire load per unit floor area.

5.2 RECOMMENDED FIRE LOADS FOR BCA CLASSES

Based on the data available the following table was compiled to represent the fire loads that would be applicable to the BCA classes of buildings. In the first draft of this table, the available data were averaged for occupancies which appeared to match those of the BCA classifications. This gave a mean and an estimate of standard deviation for each class. The data were then reviewed by an expert panel, see below, and modified to take into account their views. Table 5.1 is considered to be the best estimate currently available of the fire loads of buildings in Australia. It should be noted that the present project is related only to BCA classes 2-9.

5.3 REVIEW OF FIGURES

A summary of the total data from all sources which were surveyed was distributed to a panel of experts who were asked to rate each data source according to its relevance to the present project. Once the weightings were analysed and taken into account in deriving mean and standard deviation values, the resulting values were found to be only slightly different from those which had been derived before the weighting exercise.

The list of experts who took part in the study and the instructions issued to them are given in Appendix C.

Table 5.1 Fire Loads for BCA Classes of Buildings

Class	Description	Total fire load (MJ / m ${ }^{2}$ floor area)		
		Average	Standard deviation	C.O.V
$\begin{array}{rrr}1 & \\ 1 a\end{array}$	One or more buildings which in association constitute - (a) a single dwelling being (i) a detached house; or (ii) one or more attached dwellings, each being a building, separated by a fire-resisting wall, including a row house, terrace house, town house or villa unit; or (b) a boarding house, guest house, hostel or the like with a total floor area not exceeding $300 \mathrm{~m}^{2}$ and in which not more than 12 persons would ordinarily be resident, which is not located above or below another dwelling or another Class of building other than a private garage.	1000	300	0.3
2	A building containing two or more sole-occupancy units each being a separate dwelling.	1000	300	0.3
3	A residential building, other than a building of Class 1 or 2, which is a common place of long term or transient living for a number of unrelated persons, including- (a) a boarding-house, guest house, hostel, lodging-house or backpackers accommodation; or (b) a residential part of an hotel or motel; or (c) a residential part of a school; or (d) accommodation for the aged, disabled or children; or (e) a residential part of a health-care building which accommodates members of staff.	500	150	0.3
4	A dwelling in a building that is Class $5,6,7,8$ or 9 if it is the only dwelling in the building.	1000	300	0.3
5	An office building used for professional or commercial purposes, excluding buildings of Class 6, 7, 8, or 9 .	800	480	0.6
6	A shop or other building for the sale of goods by retail or the supply of services direct to the public, including-			
	(a) an eating room, cafe, restaurant, milk or soft-drink bar; or (b) a dining room, bar, shop or kiosk part of a hotel or motel; or (c) a hairdresser's or barber's shop, public laundry, or undertaker's establishment; or (d) market or sale room, showroom, or service station.	1000	500	0.5
7	A building which is- (a) a carpark; or	200	60	0.3
	(b) for storage, or display of goods or produce for sale by wholesale.	5500	3900	0.7
8	A laboratory, or a building in which a handicraft or process for the production, assembling, altering, repairing, packing, finishing, or cleaning of goods or produce is carried on for trade, sale, or gain.	600	420	0.7
9	A building of a public nature- (a) a health-care building; including those parts of the building set aside as a laboratory; or	350	110	0.3
	(b) an assembly building, including a trade workshop, laboratory or the like in a primary or secondary school, but excluding any other parts of the building that are of another Class.	750	230	0.3
$\begin{array}{\|cc\|}10 & \\ & 10 a \\ & 10 b\end{array}$	A non-habitable building or structure-			
	(a) Class 10a - a non-habitable building being a private garage, carport, shed, or the like; or	500	150	0.3
	(b) Class 10b - a structure being a fence, mast, antenna, retaining or freestanding wall, swimming pool, or the like.	-	-	-

VENTILATION FACTORS

6.1 GENERAL

Though there is not a large amount of data on fire loads with which to characterise various occupancies, there is even less data on ventilation characteristics. It is easy to envisage that this parameter may vary even more widely than fire loads between various occupancy types, and that it may not even be feasible to speak of a characteristic ventilation factor. The results of a preliminary ventilation survey based on drawings for some typical buildings and measured values for shops in a shopping centre are presented in Appendix D. Based on this information, the assumed ventilation is listed for each Building Code of Australia class considered in this project (classes 2 to 9 inclusive) in Table 6.1 below.

6.2 SURVEY DATA

A survey of available data was carried out and the results detailed in Appendix D to this report. A summary of the data is given in Table 6.1 below.

Low, medium and high values for ventilation for each BCA class were derived from the data surveyed. Where data was not available for a particular class of building then assumptions were made about the ventilation by comparison with other classes. The ventilation characteristic chosen as a representative parameter is the opening factor $A_{v} \sqrt{h_{v}} / A_{t}$. The medium value was taken to be the average value as taken from the data, the low value is the average minus 1.65 times the standard deviation with a minimum opening factor of $0.02 \mathrm{~m}^{1 / 2}$, and the high value is the average plus 1.65 times the standard deviation. The low and high values correspond to the $5^{\text {th }}$ and $95^{\text {th }}$ percentile values, respectively.

Table 6.1 Ventilation Factors for BCA Classes of Buildings

Class	Description	Opening factor $A_{v} \sqrt{h_{v}} / A_{t}$ $\left(\mathrm{~m}^{1 / 2}\right)$	
2	A building containing two or more sole- occupancy units each being a separate dwelling.	0.06	Medium

Class	Description	Opening factor $A_{v} \sqrt{h_{v}} / A_{t}$$\left(m^{1 / 2}\right)$		
		Low	Medium	High
4	A dwelling in a building that is Class 5, 6, 7, 8 or 9 if it is the only dwelling in the building.	0.06	0.10	0.16
5	An office building used for professional or commercial purposes, excluding buildings of Class 6, 7, 8, or 9 .	0.02	0.08	0.21
6	A shop or other building for the sale of goods by retail or the supply of services direct to the public, including- (a) an eating room, cafe, restaurant, milk or soft-drink bar; or (b) a dining room, bar, shop or kiosk part of a hotel or motel; or (c) a hairdresser's or barber's shop, public laundry, or undertaker's establishment; or (e) market or sale room, showroom, or service station.	0.03	0.09	0.20
7 7a**	A building which is(a) a carpark	0.02	0.1	0.3
$7 \mathrm{~b}^{* *}$	(b) for storage, or display of goods or produce for sale by wholesale.	0.03	0.09	0.20
8	A laboratory, or a building in which a handicraft or process for the production, assembling, altering, repairing, packing, finishing, or cleaning of goods or produce is carried on for trade, sale, or gain.	0.03	0.09	0.20
9 a	A building of a public nature: (a) A health-care building; including those parts of the building set aside as a laboratory; or	0.03	0.09	0.20
9 b	(b) An assembly building, but excluding any other parts of the building that are of another Class, including \bullet - a primary or secondary school, including a trade workshop, laboratory or the like; or - (disco or nightclub; or exhibition hall; or theatre or public hall with stage; or theatre or public hall without stage; or other assembly buildings	0.03	0.09	0.20

6.3 COMMENT

Because of the variations note above, in practice, it may be necessary to consider within occupancy types a range of ventilation factors, to choose the worst case for insertion in the BCA, or to provide tables within the BCA whereby designers can select a value most appropriate to the building under consideration. Whether or not this proves to be a necessary or feasible option depends on how the fire resistance levels deduced appear to depend on the ventilation, and the complexity that it is desirable to introduce into the code.

7 DETERMINATION OF EXPOSURE PERIODS

7.1 INTRODUCTION

In introducing the performance levels in Part 1 of this project report, a characteristic time of exposure for an element was defined, determined by its role in the building. Elements that are there primarily to protect escape routes only have to survive until the building occupants have escaped and elements that are there to protect fire-fighters may be required to survive for a different period of time. In order to calculate the exposure it will therefore be necessary to evaluate these times.

7.2 ESCAPE TIMES

There is a shortage of readily available data in summary form, which will allow confident calculation of escape times for different occupancies. The Fire Engineering Guidelines provides a methodology which in principle would generate the required times for input to the escape duration. However, since the Guidelines document was published in March 1996, it has become apparent to users of the document that the times predicted for escape from many building types are extremely conservative, and suggest that levels of fire protection for life safety should be far higher than the BCA demands. An alternative set of figures was derived for FCRC Project 2, but again these appear to be rather conservative. A proposal is under consideration by FCRC to review the relevant Chapter of the Guidelines document, but it appears likely that this review will not be concluded in time for the planned completion of Project 3.

It was initially proposed that the Guidelines document should be used in Project 3 to generate escape times. A summary of the escape times as calculated from the Guidelines is presented in Appendix E. The Guidelines method suggests that the escape time is made up of a cue time, a response time, a coping time and an evacuation time. The cue time is the time taken for people to have some evidence that there is a fire, such as smell of smoke, seeing flames, hearing an alarm or being informed by another person. The response time is the time taken for people to acknowledge that the cue represents a fire and to decide to do something. The coping time covers the activities undertaken by people following response. Finally the evacuation time is the time required to evacuate, once that activity is undertaken. The time taken for people to respond and to cope is assumed to depend on the type of cue received. The sound of an alarm bell is assumed to elicit a very slow response whereas the sight of flames results in a rapid response. Each of the times calculated is, in the Guidelines method, subject to a weighting factor depending on the occupancy. In cases where people are likely to be asleep, for example, the weighting factor is long. For people awake, alert and familiar with evacuation routes, the weighting should be shorter. However, as can be seen from the results presented in Appendix E, the times obtained are excessively long, and the results do not differentiate clearly between sleeping and non-sleeping occupancies.

Marchant (ref) has pointed out that the methodology developed in the Guidelines appears to be based on the work of Sime, but manipulates the weighting factors differently, obtaining total evacuation times that are much greater than Sime's. In some instances the difference amounts to a factor of 3 or more in total calculated evacuation time. It is not clear whether or
not the Guidelines document has additional data to support the alternative method: it seems unlikely that it does. It is therefore proposed here that Sime's method be adopted for the calculation of evacuation time.

Sime does not separate response and coping time, but calculates a time to move. This is founded on a base time which is then multiplied by a weighting factor. The weighting factors are calculated differently from the method used in the Guidelines. These two factors give rise to the difference in the time prior to movement that is calculated by the two methods.

It is worthwhile to consider buildings in two groups, high-rise and low-rise. In the high-rise buildings the time for evacuation is highly dependent on flow down stairs, whereas in lowrise buildings it will depend more on the flow through doors. High-rise buildings would be expected to have much greater evacuation times. Not all buildings would be expected to be high-rise in Australia, and we have just considered only offices, hotels and apartments as being typical of Australian construction.

7.3 FIRE BRIGADE ACCESS TIME

One figure is needed for each occupancy which describes the time for which the fire brigade might need to have access to the building for firefighting purposes, where this is envisaged within the BCA. This last point has been addressed above: it is still not clear how to distinguish buildings which the fire brigade is expected to enter and for whom protective measures are included in the BCA, from those where this is not expected and no provisions are included. Guidance on this point has been sought from ABCB , and the response is that there are no such building specifically envisaged with the BCA, though in principle firefighters could require access to any building for search and rescue purposes. The implication is that buildings do not have features specifically for fire-fighting access. For the purposes of this project, it will be assumed that the required performance from compartment boundaries is as stated previously, that the element should survive until fire-fighters have brought the fire under control. However, where elements for the protection of the fire brigade can be identified, the required duration of survival of such elements is the time for the fire brigade to get the fire under control.

Consideration was given to the use of the recently developed Fire Brigade Intervention Model (FBIM) for calculation of the fire brigade access time. The model sets out to assign probabilities and representative times to the range of activities undertaken by the Fire Brigade from the time they receive a call to an incident to the time that they leave the scene. These activities include response, setup of equipment, assistance with evacuation, search and rescue and direct fire-fighting operations. The model is described in detail in Appendix F. It is sufficiently detailed that the calculation of probable response times and times to certain activities is possible.

On consideration, it was thought that the application of the FBIM to the calculation procedures in Project 3 would be inappropriate because the level of detail is not required. From the NSW fire statistics (paper 27/04/97), it is possible to deduce figures for the time which elapses between the first call to the fire brigade regarding an incident, and the time at which the incident is recorded as being under control. From the statistics, it is not possible to
relate this time to the type of building. Though a significant difference may be identified in 'time to arrival' on the basis of 'rural' or 'urban' location, it is debatable whether such distinctions exist in the 'time to control'. In any case the incorporation of such a distinction would not be feasible from a regulatory point of view, since these could be subject to change with time. It is therefore proposed that to address the Project 3 prescriptions, one representative value of the time to get the fire under control must be adopted for all buildings and locations. The statistical data is summarised in Appendix F. From the data presented, it may be seen that in 50% of all incidents, the fire brigade arrive within 7 minutes, and the fire is brought under control within about 15 minutes, ignoring the fire incidents for which this data is unknown. In 90% of cases for which it is recorded, the time to bring the fire under control is within 50 minutes. The data show that these results may be skewed by some very long fire control times.

7.4 FIRE SEVERITY (BURNOUT TIME)

The time to burnout is generated by the fire severity model and is related to the time required to consume all of the fuel. Higher fire loads will give longer burnout times. Lower ventilation will tend to give longer burnout times. In practice, all of the fuel is often not consumed in a fire, and literature searches were undertaken to see whether experimental data concerning the proportion of the fire load which remains unburnt is available. On useful data was found. However, in the tests that are the main sources of the data on which this report is based no mention of unburnt fuel is made.

Appendix H presents the data and basis for the calculation of the duration and temperatures of fires in enclosures for use in the calculation of the severity of the fires in the enclosures suggested for the BCA occupancies. Appendix I provides some general information on the temperature rise in elements in an enclosure subject to an idealised temperature relationship and in the same elements subjected to the temperature rise required in the standard fire test.
Calculation of the estimated time to burnout in the maximum size enclosures for each of the BCA occupancies is covered in Appendix J.

8 BARRIERS AND STRUCTURE

8.1 GENERAL

Where barriers fail in fire, they do so because of the effects of heat or high temperatures on the properties of materials. High temperatures cause loss of strength in steel or timber members within composite barriers, or causes concrete to spall, or plasterboard to crack. The prediction of barrier failure requires the development of a heat transfer model from the fire within the barrier, which can incorporate the effects of moisture, since this is relevant to the failure of plasterboard and concrete. Coupled with time-dependent heat flow models is the necessity to incorporate temperature-dependent predictions of material properties.

The criteria for failure of the barrier need to be established such that the heat flow model can be used for predictive purposes. For the behaviour of barriers, Project 3 has adopted the models developed for Project 4 which include models for the behaviour of concrete and masonry, as well as timber/plasterboard and steel/plasterboard composites.

8.2 MODELS FOR BARRIER FAILURE

Details of the barrier failure models is given in Appendix G. The criteria for failure adopted are the loss of integrity of the barrier or the increase in temperature of the non fire surface being greater than $200^{\circ} \mathrm{C}$. Once these criteria have been exceeded it is assumed that there is a high likelihood of fire passing to the far side of the barrier.

The following is an extract from the Barrier failure model report prepared for project 4

This report describes the models that have been developed for predicting the failure times of barriers exposed to an enclosure fire in a building. Failure times due to failure from structural adequacy, integrity and insulation are considered. Models for the failure times of structural frame elements are also developed to be used in conjunction with barriers which depend upon the stability of the structural elements for support. Models have been developed for the following elements of construction:

- Steel Stud Walls
- (Masonry Walls
- (Concrete Walls and Shafts
- Concrete Beams and Slabs
- (Concrete Columns
- (Steel Structural embers
- (Metal Shafts and Ducts

The work described in this report was undertaken as part of Fire Code Reform Centre Project 4 entitled "Fire Safety System Model - Residential Buildings". A computer program called BSpread has been written to be used as part of the development of the Fire Safety System Model for residential buildings.

The results of each of the models have been validated against selected published test results, generally only for thermal performance. Where data for checking of structural response is not available the structural performance is implied on the
basis that the models for structural behaviour under elevated temperatures were adopted from established sources. Due to a paucity of tests on elements exposed to real fires, comparisons have only been possible with standard fire tests. However, it is believed that accuracy in the prediction of thermal response is not sensitive to the differences in the shape of the temperature time curves between real and standard fires.

Barriers which are not considered in this report are construction elements made of timber (e.g. timber stud wall, timber flooring) and barriers which have combustible linings. However, in Project 4 barriers with timber studs have been considered and a very sophisticated model used. The failure times in real fires of elements with similar FRLs using this model are similar to those using the BSpread models. Thus it can be assumed that the results produced using BSpread also reasonably represent barriers using timber studs also.
The models can be extended to develop distribution functions of time-dependent failure probabilities of the barriers using a Monte Carlo simulation approach for the purpose of conducting a risk analysis. This is achieved by varying the input values for each barrier according to appropriate distribution functions over a large number of runs. Calculations of this sort are not done in this report.
The models have been developed to be relatively simple such that they will have a fast execution time and yet be sufficiently accurate such that they can be incorporated into a risk assessment analysis. Overall, the models show reasonable predictions despite their relative simplicity.

8.3 MATERIALS

Conventional materials have been assumed for the barrier materials and standard (published) material properties used. However, to achieve reasonably precisely the FRLs required, the thicknesses of materials (plasterboard, concrete cover, etc) used are non-standard. In general, this has been accomplished by adjusting the thickness of the insulating component of the element (for example the plasterboard thickness for steel-stud walls). In some cases minor adjustment has been accomplished by also adjusting the overall member size, etc

8.4 CONSTRUCTION CHARACTERISTICS

An analysis has been carried out to determine the likely properties of building structures as follows. The actual sizes of structural members are dependent on the structural arrangement in any given building and so only general estimates of sizes can be made. Typical sizes probably do not exist except in a limited number of places and so ranges of sizes are required for any given occupancy.

Reinforced Concrete Slabs (Roofs and Floors)

Slabs thicknesses are usually in the range of 120 to 250 mm . The lower end of the range is governed by the need to allow for top and bottom cover, four layers of reinforcement and space between the top and bottom layers. The upper end of the range is governed by economics in that above a certain slab thickness the designer will provide supporting beams (or slab bands) or more closely spaced beams to reduce the slab thickness and overall concrete quantity.

Minimum thickness for given spans of one-way slabs not supporting construction likely to be damaged by large deflections may be estimated from Table 9.5(a) of ACI 318:

Member	Minimum			
	Simply supported	One end continuous	Both ends continuous	Cantilever
Solid one-way slabs	$l / 20$	$l / 24$	l/ 28	$l / 10$
Beams or ribbed one-way slabs	l/ 16	$l / 18.5$	l/ 21	$l / 8$

The cover to the bottom reinforcement mainly governs the structural adequacy fire resistance of slabs. Therefore, for the purpose of generating elements for the FRL calculations of a given occupancy it is probably only necessary to have two or three slab thicknesses to ensure there is no size effect but have a wide range of bottom covers. For a selected reasonable slab thickness the span may be calculated from the above table, then the reinforcement may be estimated based on AS1170.1 loads and strength considerations. The design load for fire situations can be calculated to be consistent with the design ultimate dead and live loads.

Residential slabs (supported on load-bearing walls) are usually 120 to 160 mm thick.

Reinforced Concrete Beams

Base the depths on the tabulated values for beams from ACI 318 and the following estimates of span:

Class 2, 3 and 4 (Residential): 5 m
Class 5 (Offices): $\quad 6-12 \mathrm{~m}$
Class 6 (Retail): $6-12 \mathrm{~m}$
Class 7 (a)(Carpark), (b)(Storage):
6-12 m
Class 8 (Industrial):
6-12 m
Class 9a (Health), 9b (Assembly):
6-12m
(Most of these span lengths are not based on any evidence.)

Reinforced Concrete Columns

Column sizes are dependent on the total loaded area supported by the column i.e. the sum of the loaded area for each floor above the level under consideration. The smallest column size
is 200 mm square but it is unusual to find a column so small. A reasonable size estimate for columns in the lower levels of a 50 storey office tower building is 900 mm square (based on approx. 50 sq. m floor area per column per level). For a similar 10 storey building the column size is of the order of 500 mm square, and 20 storey is 600 mm square. These sizes will be relatively insensitive to occupancy type for the occupancies that occur in high-rise buildings.
Internal columns in low-rise buildings may support larger values of floor area per level than the edge columns in towers.

Reinforced Concrete Walls

Typical wall thicknesses are in the range of 150 to 250 mm , although thicker sections will occur in the core walls of tower buildings.

8.5 BARRIER AND STRUCTURAL ELEMENTS PREDICTED PERFORMANCE

In Appendix G appended to the report on the barrier models from Project 4 is a table giving the predicted failure times in idealised (real) fires for FRLs of 30, 45, 60, 90, 120 and 180 minutes for each of the elements considered.

The temperature profile for the design fires are the specified (maximum) temperature (Tmax) at the start of the fire with the temperature falling linearly to $500^{\circ} \mathrm{C}$ at the time corresponding to the duration. These temperature profiles are shown in Figure G1.

In Table G1 the duration, in seconds, is given in the column marked t 500 .
An entry of "Nil" in Table G1 means no failure is predicted.
Examination of Table G1 shows that for each FRL most of the elements fail within a similar time period (generally within ± 5 minutes). This is to be expected and comes about because elements designed to just survive a specific period in the standard fire test are likely to have similar sensitivity to other time-temperature histories.

9 CALCULATION OF REQUIRED FRLS

9.1 INTRODUCTION

Appendix A3.1 of the Part 1 Report on Project 3 summarised the BCA requirements for internal compartmentation in buildings of Type A construction. It was not intended that this table should be a comprehensive analysis of the BCA FRL requirements, but rather that it should draw attention to the complexities of the current requirements. It is questionable whether it is the role of Project 3 to prescribe a new FRL to be substituted into the BCA as it stands, where a current requirement appears. Rather, it has been assumed that the task of Project 3 was to derive a sound calculation methodology and, for each building category, to deduce the FRL appropriate to each performance level. The regulators may then be in a position to decide the function of the fire resistance requirement for each case, and hopefully to introduce simplifications to the requirements in the course of that process. Tables 7.3 and 7.4 of the Part 1 Report indicate how this might be achieved.

In the following subsections the actual calculation of fire severity for each BCA class is summarised, as is the calculation of the required fire durations and the FRLs required for each building class.

9.2 ESTIMATION OF FIRE SEVERITY

A detailed discussion of the estimation of fire severity is given in Appendix H and a qualitative discussion of the relationship between the standard fire test temperature-time curve and that if various idealised real fires is given in Appendix I.

The enclosures, fuel loads and ventilation conditions of interest in Project 3 are shown in Table A2 of Appendix H. Many of these enclosures (particularly in relation to size) are considerably different from the enclosures covered by the experimental data.

As the formulae in Appendix H are least squares correlations it is not considered advisable to extrapolate significantly from the conditions represented by the experimental data. Consequently some consideration is required of how to treat the enclosures that require significant extrapolation.

Apart from the enclosure and vent dimensions, the other major departure from the experimental data is the fire load, which in many of the enclosures is considerably greater than used in the tests. Examination of the test results has revealed that for the quite limited range of fire loads covered, the changes in the fire load have little or no effect on the rate of burning. Thus, for a given enclosure size and ventilation condition, the duration of burning is essentially proportional to the fire load. It will be assumed that this remains true throughout the range of fire loads required for Project 3 although it is by no means certain that this is indeed the case for the very high fire loads specified for some occupancies.

It is recommended in Appendix H that a single maximum enclosure temperature of $1100^{\circ} \mathrm{C}$ be used for all enclosures and ventilation conditions. (It is clear in Appendix H that wide variations in temperature occur for the same enclosures and ventilation conditions. It also
appears from Figure 22 of Appendix H that there is no significant difference between the w / W $=1$ and $w / W<l$ cases in regard to temperatures.) With this recommendation, the duration of high temperatures (assumed closely related to the duration of burning) becomes de facto a surrogate for fire severity. As discussed above, small scale testing and the regression formulae developed in Appendix H indicate that for a given vent size a full width vent (w / W $=1$) results in longer fire durations than partial width vents. In terms of the objectives of Project 3, related to determination of FRLs for deemed to satisfy requirements it is conservative (that is, longer fire durations and thus higher FRLs will result) if it is assumed all vents are full width vents $(w / W=1)$. Thus Equation 4 of Appendix H (for the $w / W=1$ case) is used in preference to Equation 5 of Appendix H (which is for the $w / W<1$ case) for determination of fire duration.

Considering now the enclosure and vent size issues. The enclosure sizes 4 m by $8 \mathrm{~m}, 8 \mathrm{~m}$ by 4 m and 5 and 6 m by 20 m are within the range covered by the data and therefore can be addressed using Equations 4, 5 and 9 of Appendix H. The remaining enclosure sizes 30 m by $50 \mathrm{~m}, 50 \mathrm{~m}$ by $100 \mathrm{~m}, 60 \mathrm{~m}$ by 60 m and 100 m by 50 m (see Table 1 of Appendix H) are outside this range and therefore are not covered and, due to the degree of extrapolation involved no estimates are made of fire duration for these enclosures

Fire duration and temperature results based on Equations 4 and 9 of Appendix H for the range of enclosures considered to be covered by the data are given in Table A3 of Appendix H.

The fire duration is obtained from the following formula:

$$
t_{500}=\frac{Q \times(D}{\left(\frac{R}{1.7}\right) \times(60} \text { (minutes) }
$$

(Equation 10 of Appendix H)

This relates the total fire load per unit width of enclosure (and vent) divided by the maximum burning rate estimated using Equation 4 of Appendix H to the fire duration (taken as the time for which temperatures are above $500{ }^{\circ} \mathrm{C}$). The 1.7 term adjusts the estimated maximum burning rate back to an average rate.

Before considering how to cover those enclosures requiring extrapolation it is worthwhile considering the results obtained from Equation 4 for the largest enclosures covered by the data. Therefore an enclosure 5 m wide by 20 m deep with a full width vent will be considered. The vent heights required for the large enclosures (Table A2 of Appendix H) include $0.91,1.13,1.21,1.52,1.70,2.04,2.40,2.89,3.00,4.08,4.34,4.63,5.00$ and 6.00 m . The only vent height in the data for an enclosure of this approximate size is 2.75 m high. However in the smaller enclosures there are a variety of vent heights less than this, so it is presumed that smaller vents are reasonably covered by relationships based on the data. As pointed out in Attachments 1, 2 and 3 of Appendix H the flows observed in enclosures with full width vents are essentially two-dimensional and thus it is expected that the gas flows and thus burning rate are essentially proportional to the width of the enclosure and vent. A regression has been carried out on the data similar to Equation 4 but with the index for the vent width w constrained to 1.0 . The resulting relationship is:

$$
w / W=1 \quad R=\left(0.53 \times\left(w \times\left(h^{1.8} \quad\left(\mathrm{r}^{2}=0.97\right) \quad \text { (Equation } 11 \text { of Appendix } \mathrm{H}\right)\right.\right.
$$

This relationship (with $w=1.0 \mathrm{~m}$) produces the results shown in Table 6 of Appendix H (reproduced below) for unit width vents and the range of vent heights required. Note that vent heights greater than 3 m are a significant extrapolation from the data.

Table 6 of Appendix H Burning Rate and Fire Duration for a Range of Vent Heights

$\mathrm{h}(\mathrm{m})$	$\mathrm{R}(\mathrm{MW} / \mathrm{m})$	$t<500$ for $\mathrm{D}=20 \mathrm{~m}$ and $\mathrm{Q}=1000 \mathrm{MJ} / \mathrm{m}^{2}$
0.91	0.45	1267
1.13	0.66	858
1.21	0.75	759
1.52	1.13	503
1.70	1.38	411
2.04	1.91	296
2.40	2.56	221
2.89	3.58	158
3.00	3.83	148
4.08	6.66	85
4.34	7.44	76
4.63	8.36	68
5.00	9.60	59
6.00	13.33	42

The resulting fire durations for an enclosure 20 m deep with the fire load densities relevant for these enclosures are shown in Table 7 of Appendix H (also reproduced below).

Inspection of Table 7 of Appendix H reveals that for all but the lowest fire loads and greatest vent heights the fire durations are very high. Thus, it is expected that for enclosures of greater depth (but having the same vent height) the fire durations will be even greater.

Interpolation within Table 7 of Appendix H reveals that the actual duration for the enclosure that is just over 20 m deep with a 2.75 m high vent is close to the predicted duration. However, the durations for a similar depth enclosure at much smaller vent heights are greater than those actually obtained.

Table 7 of Appendix H Fire Durations

h (m)	Fire Duration (minutes) for 20 m deep enclosure and specified fire load density ($\mathrm{MJ} / \mathrm{m}^{\mathbf{2}}$)													
	Fire Load Density (MJ/m ${ }^{2}$													
	121	170	201	309	410	590	600	1000	1401	1600	1600	1904	5508	13005
0.91	153	215	254	392	519	747	760	1266	1775	2027	2027	2412	6979	16477
1.13	104	146	172	265	352	506	515	858	1202	1373	1373	1634	4726	11159
1.21	92	129	152	235	311	448	455	758	1063	1214	1214	1444	4179	9866
1.52	61	86	101	156	206	297	302	503	705	805	805	958	2772	6544
1.7	50	70	83	127	169	243	247	411	576	658	658	783	2266	5350
2.04	36	50	59	92	121	175	178	296	415	474	474	564	1632	3853
2.4	27	38	44	68	91	130	133	221	310	354	354	421	1218	2876
2.89	19	27	32	49	65	93	95	158	222	253	253	301	872	2058
3	18	25	30	46	61	87	89	148	207	237	237	282	815	1925
4.08	10	14	17	26	35	50	51	85	119	136	136	162	469	1107
4.34	9	13	15	24	31	45	46	76	107	122	122	145	419	990
4.63	8	12	14	21	28	40	41	68	95	108	108	129	373	881
5	7	10	12	18	24	35	35	59	83	94	94	112	325	767
6	5	7	9	13	17	25	26	42	60	68	68	81	234	553

The figures in Table 7 of appendix H indicate that for many deeper enclosures with moderate to very high fire load densities the possible fire durations are very great. Possibly in these cases extrapolation is unnecessary, as the fire durations are such that it is obvious that fires of such durations in buildings are simply unacceptable and also that the fire resistance level that would be required to withstand fires of such durations would be well over even the greatest fire resistances normally specified for buildings (180 minutes or 240 minutes). In such cases it might be argued that systems preventing such fires occurring are more appropriate than attempting to physically confine or resist them by specifying a fire resistance level.

Thus estimates of the duration and maximum temperatures that might be experienced in fires in small enclosures have been made and are presented in Table A2 of Appendix H.

Prediction of the duration and maximum temperatures that might be experienced in fires in large enclosures (but with sizes that are quite realistic for many buildings) is subject to great uncertainty as the test data that is available is only for smaller enclosures. Extrapolation based on such data as is available would require assumption of the form of the relationships between the variables. This is not possible at this stage.

9.3 ESTIMATION OF FRLS

A detailed discussion of the estimation of required FRLs is given in Appendix J. In essence the fire durations estimated above and the maximum temperature of $1100^{\circ} \mathrm{C}$ mentioned above are used to determine the required FRL such that the element would be expected to not fail within the duration required using Table G1 of Appendix G.

The estimates of the FRLs required in the cases considered are highly dependent on the three factors considered in their derivation (fire load density, enclosure area and vent size) and on the temperature assumed to occur. The assumption of an $1100{ }^{\circ} \mathrm{C}$ temperature (which it is acknowledged is in the upper range of temperatures measured in realistic fire tests in enclosures) results in a quite severe fire when compared with the standard fire test as the furnace temperature only gets to this level nearly three hours after the commencement of the test. (The fire load density used is the average, and thus does not represent an extreme, although some of the values appear to be very high when it is assumed that this density of fuel is considered to occur throughout the enclosure.)

The three factors considered in the derivation are all important but the size of the enclosure is possibly most important. There are two (possibly three, if the $1100{ }^{\circ} \mathrm{C}$ temperature is considered also) extreme factors involved in the calculations on which the FRLs are based: the enclosures are the largest considered likely for the occupancies and the ventilation is the minimum considered likely. Both of these lead to longer durations, and therefore the durations estimated must be towards the upper extreme of those that might occur in practice.

For a specific building design a calculation using the methods used above but with the actual enclosure size and ventilation conditions would lead to considerably lower requirements. This can be accomplished by calculating the fire duration and then using Table 4 of Appendix J.

The following table (Table 5 of Appendix J) is an example of a possible presentation to cover a range of enclosure sizes and ventilation conditions. It is for Classes $2 \& 4$ and includes the values in Table 4 of Appendix J.

Table 5 of Appendix J Example Table Covering a Range of Enclosure and Vent Sizes

Enclosure Size	Ventilation	
	Small	Large
$(10 \mathrm{~m} \times 1.2 \mathrm{~m})$	$(10 \mathrm{~m} \times 2.4 \mathrm{~m})$	
Large $(10 \mathrm{~m} \times 20 \mathrm{~m})$	771	
(FRL)	223	
(FRL)		
$(5 \mathrm{~m} \times 10 \mathrm{~m})$	386	112
(FRL $)$	(FRL 120)	
$3 \mathrm{~m} \times 5 \mathrm{~m}$)	193	56
(FRL)	(FRL 90)	

This estimate may also be made slightly more approximately by using the following formulae:

$$
\begin{align*}
& t=\left(\frac{F L D \times(D}{18.7 \times\left(h^{1.79}\right.}\right. \tag{1}\\
& F R L \geq\left(\frac{(t+1230)}{67}\right. \tag{2}
\end{align*}
$$

For the same example as in Table 5 of Appendix J (reproduced above) these formulae would lead to the results in the following table (Table 6 of Appendix J). In this table the FRLs are expressed in the calculated number of minutes rather than in the standard FRL periods (60 , 90,120 , etc)

Table 6 of Appendix J Example Covering a Range of Enclosure and Vent Sizes Based on Equations

Enclosure Size	Ventilation	
	$\begin{gathered} \text { Small } \\ (10 \mathrm{~m} \times 1.2 \mathrm{~m}) \end{gathered}$	$\begin{gathered} \text { Large } \\ (10 \mathrm{~m} \times 2.4 \mathrm{~m}) \end{gathered}$
$\begin{aligned} & \text { Large } \\ & (10 \mathrm{~m} \times 20 \mathrm{~m}) \end{aligned}$	$\begin{gathered} 770 \\ \text { (FRL 708) } \\ \hline \end{gathered}$	$\begin{gathered} 221 \\ \text { (FRL 216) } \\ \hline \end{gathered}$
$\begin{aligned} & \hline \text { Medium } \\ & (5 \mathrm{~m} \times 10 \mathrm{~m}) \\ & \hline \end{aligned}$	385 (FRL 363)	111 (FRL 117)
Small $3 \mathrm{mx} 5 \mathrm{~m})$	$\begin{gathered} 192 \\ \text { (FRL 191) } \\ \hline \end{gathered}$	$\begin{gathered} 55 \\ \text { (FRL 68) } \\ \hline \end{gathered}$

(Note in this table that for fire durations up to about 160 minutes the FRL period is slightly greater than the fire duration, but for those above about 200 minutes the FRL period is less than the fire duration. This is because the standard fire test temperature is about $1100{ }^{\circ} \mathrm{C}$ at 180 minutes.)

It can be seen that the results in the two tables are very similar.

9.4 COMMENT

It should be noted that many of the FRLs recommended above and in Table 4 of Appendix J are greater than those currently required by the BCA.

It is not recommended that FRLs in the BCA be increased as there is no indication in the fire record that the current FRLs are unsatisfactory. Indeed, the general opinion seems to be that, if anything, FRLs are too high. As the estimates above are highly dependent on the enclosure size, fire load density and ventilation assumed it may be that reduced values of these parameters might be appropriate, and that further consideration of these values by ABCB would be sensible.

It should also be noted that aspects of the estimation of fire severity in enclosures are still under investigation. Consequently, it is likely that the estimates of fire severity developed above will be refined in the near future.

10 CONCLUSIONS

Estimates of the fire resistance required for the range of buildings covered by the BCA have been developed. These are based correlations which are themselves based on limited data. The data is inadequate in that it does not cover the range of enclosure sizes and other important factors that may occur in practice and which the BCA would be expected to cover.

Nevertheless, the tables in Appendix J provide a rational estimate of the FRLs required for many of the enclosures in buildings covered by the BCA. Many of the estimated FRLs are similar to those currently required by the BCA. However, many are also greater than those required by the BCA.

It is reiterated that it is not recommended that FRLs in the BCA be increased as there is no indication in the fire record that the current FRLs are unsatisfactory. As the estimates are highly dependent on the enclosure size, fire load density and ventilation assumed it may be that reduced values of these parameters might be appropriate, and that further consideration of these values by ABCB would be sensible.

Finally, examination of Appendix H shows that there are many factors that affect estimates of the severity of fires in enclosures. It cannot be expected that required FRLs in a document such as the BCA are anything but conservative, and often very conservative, for the majority of situations to which they are applied. They will only be really appropriate for the more extreme situations on which that are based. Consequently, it is appropriate that determination of reduced FRLs by designers using appropriate estimation techniques be made possible, preferably within the BCA, but certainly within the regulatory system. To not do so is equivalent to saying all structural members in each class of building shall be of a certain (very large) size, and that the normal method of structural design cannot be used.

APPENDIX A

DEFINITIONS AND NOTATION

Critical Structure

Critical structure is any system of structural elements in a building where simultaneous failure under fire conditions is foreseeable, and would signal collapse involving the whole or a significant part of the building. (Failure of non-critical structure would cause only local collapse, if any.)

Compartment

A fire compartment is intended to limit the fire size to that which can be controlled by available fire fighting resources. It may contain one or more enclosures. It is bound on all sides by barrier elements with defined Fire Resistance Levels (FRL)

Enclosure

A room or other enclosed space.

Fire Load

The mass of combustible materials in an enclosure, room, compartment or area, usually specified as the equivalent mass of wood having the same total heat of combustion.

Fire Load Density

The fire load per unit area (kg wood equivalent per m^{2}).

Fire Severity

The temperature-time history of a fire in an enclosure. The severity is greater with higher temperature fires of a given duration and with longer duration fires of a given temperature.

Performance Levels

The five levels of performance of barrier elements (3 of non-barrier structural elements) defined in Section 1.2 of this report. The performance levels define rational objectives that barriers might be intended to achieve.

Survival Times

The time for which barrier or structural elements will perform their intended function under defined fire conditions.

Ventilation Factor

The term $\mathrm{Ah}^{0.5}$ where $\mathrm{A}=$ area of opening(s) and $\mathrm{h}=$ height of the opening(s). It defines the ventilation available in an enclosure.

APPENDIX B

REVIEWS OF TECHNIQUES FOR DETERMINING FIRE SEVERITY

B1 EQUAL TEMPERATURE-TIME AREAS

The concept of equal temperature-time areas was pioneered by Ingberg in the 1920's. The equivalent fire exposure was regarded as solely a function of the fire load density (the amount of combustible material per unit floor area) so that the degree of ventilation and the thermal properties of the compartment were not considered. Ingberg correlated equivalent fire exposure with the fire load density by determining the time at which the area under the time-temperature curve in a standard ASTM fire test (above a certain base line, somewhere between 150° and $300^{\circ} \mathrm{C}$) equalled the same value as the area under the time-temperature curve for a real fire (above the same base line). Temperature histories for real fires were based on burnout tests conducted by the US National Bureau of Standards. The tests included two actual buildings that were allowed to burn to destruction and a series of fires in fire resistive test buildings containing contents representative of office, record room, and household occupancies (Campbell (1986)). Although the ventilation in the test buildings was not reported, the windows were equipped with steel shutters that could be adjusted to control ventilation and maximise fire severity. The correlation between equivalent fire exposure and fire load (from AISI (1971)) is:

Fire load density			Equivalent fire exposure (hours $)$
$\left(\mathrm{lb} / \mathrm{ft}^{2}\right)^{*}$	$\left(\mathrm{~kg} / \mathrm{m}^{2}\right)^{* *}$	$\left(\mathrm{MJ} / \mathrm{m}^{2}\right)^{* *}$	
5	25	450	$1 / 2$
$71 / 2$	37	680	$3 / 4$
10	50	910	1
15	75	1400	$11 / 2$
20	100	1800	2
30	150	2700	3
40	200	3600	$41 / 2$
50	240	4500	6
60	290	5400	$71 / 2$

* combustibles reduced to wood equivalent of 8000 BTU per pound
** soft conversion based on $1 \mathrm{lb} / \mathrm{ft}^{2}=4.88 \mathrm{~kg} / \mathrm{m}^{2}$ and heat of combustion $=18.6 \mathrm{MJ} / \mathrm{kg}$

Campbell (1986) and Butcher (1991) have slightly different values for equivalent fire exposure at higher fire load densities.

Given estimates of fire load density for different occupancy types then the Fire Resistance Level (FRL) to withstand burnout may be estimated. AISI (1971) relates fire load density and FRL for US occupancy types as:

Occupancy type	Fire load density $\left(\mathrm{lb} / \mathrm{ft}^{2}\right)$	$\left(\mathrm{kg} / \mathrm{m}^{2}\right)^{*}$	$\left(\mathrm{MJ} / \mathrm{m}^{2}\right)^{*}$	Equivalent Fire Exposure (hours)
Residential	5 to 10	25 to 50	450 to 910	$1 / 2$ to 1
Educational	5 to 10	25 to 50	450 to 910	$1 / 2$ to 1
Institutional	5 to 10	25 to 50	450 to 910	$1 / 2$ to 1
Assembly	5 to 10	25 to 50	450 to 910	$1 / 2$ to 1
Business	5 to 10	25 to 50	450 to 910	$1 / 2$ to 1
Mercantile	10 to 15	50 to 75	910 to 1400	1 to $11 / 2$
Industrial	variable	variable	variable	$* *$
Storage	variable	variable	variable	$* *$
Hazardous	variable	variable	variable	$* *$

* soft conversion based on $1 \mathrm{lb} / \mathrm{ft}^{2}=4.88 \mathrm{~kg} / \mathrm{m}^{2}$ and heat of combustion $=18.6 \mathrm{MJ} / \mathrm{kg}$
** fire severity will depend on the specific occupancy
and Butcher (1991) for British occupancy types as:

Occupancy type	Fire load density (BTU / ft ${ }^{2}$)	$\left(\mathrm{lb} / \mathrm{ft}^{2}\right)^{*}$	(MJ / m ${ }^{2}$)	Equivalent Fire Exposure** (hours)
Domestic	40000	5	465	1/2
Institutional	40000	5	465	1/2
Other residential	40000	5	465	1/2
Office	$\begin{array}{\|l} 40000 \\ 80000 \end{array}$	5 to 10	465 to 930	$1 / 2$ to 1
Shop	up to 400000	up to 50	up to 4650	up to 6
Factory	up to 240000	up to 30	up to 2790	up to 3
Assembly	$\begin{aligned} & 40000 \text { to } \\ & 80000 \end{aligned}$	5 to 10	465 to 930	$1 / 2$ to 1
Storage and general	up to 800000	up to 100	up to 9300	to more than 7

* wood equivalent
** from correlation between Equivalent Fire Exposure and Fire Load Density

Apparently, British post-World War II fire studies (MOW(1946)), where buildings were grouped or graded into three broad categories depending on fire load density, were used as the basis for the Australian building regulations. The following table (after Drysdale (1949)) summarises these gradings and the corresponding fire load densities and equivalent fire exposure:

* combustibles reduced to wood equivalent of 8000 BTU per pound
$* *$ soft conversion based on $1 \mathrm{lb} / \mathrm{ft}^{2}=4.88 \mathrm{~kg} / \mathrm{m}^{2}$ and heat of combustion $=18.6 \mathrm{MJ} / \mathrm{kg}$
The relationship between fire load density q_{f} in $\mathrm{kg} . \mathrm{m}^{-2}$ of floor area and the equivalent fire exposure t_{e} in minutes is approximately

$$
t_{e}=\left(q_{f}\right.
$$

ie. the factor of proportionality is unity for the chosen units. The British studies considered the earlier American results as well as the results of the examination of fire damage to structural elements in burnt-out buildings. The equivalent fire severities for low fire loads are similar to the American values, but at higher fire loads are somewhat lower.

Drysdale (1991) demonstrates that a relationship exists between the current fire grade (or equivalent fire exposure) and the minimum design live load (and by implication with fire load density) for different classes of occupancy (or occupancy type) in Australia:

Class of Occupancy	Fire Grade $($ minutes $)$	Minimum Design Live Load (kPa)
Houses	not graded in Australia	1.5
Flats	90	2.0
Residential buildings	90	2.0
Office buildings	120	3.0
Shops	180	5.0
Warehouses	240	2.4 per clear metre of height

Kawagoe and Sekine (1963) and Kawagoe (1967) extended the equal temperaturetime areas approach to include the compartment ventilation properties and thermal
properties as well as the fire load. In its final form, the "equivalent testing time" (same as equivalent fire exposure) was calculated by determining the time at which the area under the time-temperature curve in a standard JIS fire test (above a base line) equalled the same value as the area under the time-temperature curve for a simulated real fire (above the same base line). The base line was $400^{\circ} \mathrm{C}$ for normal weight concrete and similar constructions, and $500^{\circ} \mathrm{C}$ for lightweight concrete and similar constructions. A post-flashover compartment fire model was used to simulate the temperature history for the real fire. Nomograms were provided to enable easy computation of the equivalent testing time. The above method was formulated to ensure that the maximum temperature rise which occurs a small distance inside the compartment walls (30 mm to 60 mm) is approximately the same for the real fire and the test fire.

B2 EQUAL TEMPERATURE RISES

The equal temperature rises concept proposes that equivalence between real and test fires may be obtained by the attainment of a certain temperature level by some important building component in the two fire exposures. From room-burn experiments or from calculation the maximum temperature rises at some locations (usually in steel components) in the boundaries of the room or in columns placed in the room are determined. Then, the temperature rises at the same locations due to the standard test temperature history are determined either by subjecting the elements to standard fire tests or by calculation. The equivalent fire exposure is then taken as the time at which the temperature in the standard test reaches the same maximum value as in the room-burn experiment or fire simulation.
Based on the results of an international experimental program on the behaviour of fully developed fires in compartments, Law $(1971,1973)$ developed the following formula (with slightly different notation)

$$
t_{e}=\left(K \frac{A_{f} q_{f}}{\sqrt{A_{v}\left(A_{t}-A_{v}\right)}}\right.
$$

where t_{e} is the equivalent fire exposure in minutes, K is a constant of the order of unity, q_{f} is the fire load in kg.m ${ }^{-2}$ of floor area, A_{f} is the floor area in m^{2}, A_{v} is the ventilation area in m^{2}, and A_{t} is the total area of the compartment internal surfaces in m^{2}. Law's formula does not take account of the thermal properties of the compartment boundaries or the height of the openings. The expression derived from a correlation of the estimated times for equal temperature rises of $550^{\circ} \mathrm{C}$ in a protected steel column due to experimental compartment fires and furnace tests.
Pettersson (1985) improved Law's formula by including the height of the openings and by taking account of the thermal properties of the compartment boundaries

$$
t_{e}=\left(0.067 \frac{q_{t f}}{\sqrt{\left(A_{v} \sqrt{h_{v}} / A_{t}\right)_{f}}} \quad\right. \text { (min.) }
$$

where $q_{t f}=\left(K_{f} q_{t}\right.$ is the effective fire load density per unit area of the bounding surfaces of the compartment (MJ m$\left.{ }^{-2}\right),\left(A_{v} \sqrt{h_{v}} / A_{t}\right)_{f}=\left(K_{f} A_{v} \sqrt{h_{v}} / A_{t}\right.$ is the effective opening factor of the fire compartment, h_{v} is the average opening height (m), q_{t} is the fire load density per unit area of the bounding surfaces of the compartment $\left(\mathrm{MJ} . \mathrm{m}^{-2}\right), K_{f}$ is a coefficient which is related to the thermal properties of the compartment bounding surfaces (eg. $K_{f}=(0.85$ for concrete). The expression resulted from a comparison of the calculated times for equal temperature rises of $500^{\circ} \mathrm{C}$ in a protected steel column due to simulated compartment fires and ISO834 furnace tests. Pettersson shows that the formula is applicable to both unprotected and protected steel elements with a critical steel temperature of about $500^{\circ} \mathrm{C}$, and may also be used for other values of the critical temperature provided that the opening factor of the fire compartment $A_{v} \sqrt{h_{v}} / A_{t}>\left(0.05 \mathrm{~m}^{\frac{1}{2}}\right.$. An alternative form of Pettersson's formula is

$$
t_{e}=\left(0.067 \frac{A_{f} q_{f f}}{A_{t} \sqrt{\left(A_{v} \sqrt{h_{v}} / A_{t}\right)_{f}}}(\text { min. })\right.
$$

where $q_{f f}=\left(K_{f} q_{f}\right.$ is the effective fire load density per unit floor area (MJ.m ${ }^{-2}$), and q_{f} is the fire load density per unit floor area (MJ. m^{-2}).

CIB (1986) presented the following form of the equation

$$
t_{e}=\left(c w q_{f} \quad \text { (min. }\right)
$$

where c is a conversion factor which accounts for the thermal properties of the boundaries (min./MJ. m^{-2}), w is a ventilation factor, and q_{f} is the fire load density per unit floor area (MJ.m ${ }^{-2}$). The conversion factor may be conservatively estimated as $c=\left(0.1 \mathrm{~min} . / \mathrm{MJ} . \mathrm{m}^{-2}\right.$, or may be found from the following table:

| Thermal absorptivity
 $\left(\mathrm{W} / \mathrm{m}^{2} \cdot \mathrm{~K} \cdot \mathrm{~h}^{1 / 2}\right)$ | $\left(\mathrm{J} / \mathrm{m}^{2} \cdot \mathrm{~K} \cdot \mathrm{~s}^{1 / 2}\right)$ |
| :--- | :--- | :--- | :--- |\quad Material \quad| lonversion factor c |
| :--- |
| $\left(\mathrm{~min} . / \mathrm{MJ} \cdot \mathrm{m}^{-2}\right)$ |

where k is the thermal conductivity (W/m.K), and ρC the heat capacity $\left(\mathrm{J} / \mathrm{m}^{3} . \mathrm{K}\right)$ of the compartment boundaries. The ventilation factor is $w=\left(A_{f} /\left[A_{t} \sqrt{\left(A_{v} \sqrt{h_{v}} / A_{t}\right)}\right]\right.$ (note: this expression is not dimensionless), and which is approximated as $w=\sqrt{0.25 A_{f} / A_{v}} \leq 1.5$. For excellent ventilation conditions, including roof openings of more than 2% of the floor area, the ventilation factor maybe reduced to 70% of this value.
[***NOTE: FINALISE WHEN EUROCODE OBTAINED, THE FOLLOWING IS FROM BUCHANAN (1994)]

The Eurocode 1 (1994) expression for equivalent fire duration is similar to the CIB expression but the conversion factor $\mathrm{c}\left(\mathrm{min} . / \mathrm{MJ} . \mathrm{m}^{-2.3}\right)$ and ventilation factor $\mathrm{w}\left(\mathrm{m}^{-0.3}\right)$ are different. If the properties of the lining materials of the compartment are not known then a value of the conversion factor $c=\left(0.067 \mathrm{~min} . / \mathrm{MJ} . \mathrm{m}^{-2.3}\right.$ may be used, otherwise

$\begin{array}{c}\text { Thermal absorptivity } \sqrt{k \rho \rho} \\ \left(\mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}^{1 / 2}\right)\end{array}$		Material	$\begin{array}{c}\text { Conversion factor } c \\ \left(\mathrm{~J} / \mathrm{m}^{2} \cdot \mathrm{~K} \cdot \mathrm{~s}^{1 / 2}\right)\end{array}$
<12	<720	Insulating material	0.090
12 to 42	720 to 2500	Concrete or plasterboard	

The ventilation factor w is

$$
\begin{aligned}
& w=\left\lvert\,\left(\frac{6.0}{h_{c}}\right)^{0.3}\left[\left(6.62+\left(\frac{90(0.4-\alpha)^{4}}{1+\left(b_{v} \alpha_{h}\right.}\right]\right\}>0.5 \mathrm{~m}^{-0.3}\right.\right. \\
& 0.05 \leq \alpha / \leq \leq 0.25 \\
& \alpha_{h}=\left(A_{h} / A_{f}\right. \\
& \alpha_{h} \leq(0.20 \\
& b_{v}=\left(1 2 . 5 \left(1+\left(10 \alpha_{v}-\alpha_{v}^{2}\right)\right.\right.
\end{aligned}
$$

and A_{v} is the area of vertical window and door openings (m^{2}), A_{h} is the area of horizontal openings in the roof $\left(\mathrm{m}^{2}\right)$, and h_{c} is the ceiling height of the compartment (m). Tabulated values of t_{e} in Acceptable Solution C3/AS1 of the New Zealand Building Code (BIA(1995)) were calculated using the Eurocode formula with ceiling height $h_{c}=3.0 \mathrm{~m}$ and conversion factor $c=\left(0.067 \mathrm{~min} . / \mathrm{MJ}^{-2.3}\right.$ (Buchanan (1994)).

B3 NORMALISED HEAT LOAD CONCEPT

The normalised heat load concept was developed over a long period and the application of the method to the determination of equivalent fire exposure is summarised in Harmathy (199091). Normalised heat load H is the total heat absorbed by a unit area of the boundaries of an enclosure during a fire, divided by the thermal absorptivity of the boundaries, and has three important characteristics

If the boundaries of an enclosure are surfaced with different building materials, H is approximately the same for all surfaces, as well as for the enclosure as a whole. This does not apply to building elements which are made from or coated with metal eg. unprotected steel columns and beams.

For any element of the enclosure, H is approximately a measure of the maximum temperature rise at some critical depth from the surface, and therefore the normalised heat load procedure is also an equal temperature rises method.

The normalised heat load does not depend significantly on the history of the heat flux that penetrates the surface, and therefore two fires in the same enclosure which produce the same H will be of the same severity. This enables the performance of a building element in a realworld fire to be related to its performance in a standard fire test.

The normalised heat load endured without failure by a prototype of a building element in a standard test fire $H^{\prime \prime}$ must be equal to or greater than the normalised heat load which is expected to be imposed on it in a real-world fire H^{\prime}. An expression for the normalised heat load for the standard fire test $H^{\prime \prime}$ was determined empirically and is dependent solely on the length of testing. This may be rearranged, substituting H^{\prime} for $H^{\prime \prime}$ (as $H^{\prime \prime} \geq\left(H^{\prime}\right)$, and therefore the equivalent fire exposure is

$$
\begin{array}{ll}
t_{e}=\left(0.11+\left(0.16 \times\left(10^{-4} H^{\prime}+\left(0.13 \times\left(10^{-9}\left(H^{\prime}\right)^{2}\right.\right.\right.\right.\right. & \text { (hours) } \\
t_{e}=\left(6.6+\left(9.6 \times\left(10^{-4} H^{\prime}+7.8 \times\left(10^{-9}\left(H^{\prime}\right)^{2}\right.\right.\right.\right. & \text { (min.) }
\end{array}
$$

where

$$
\begin{align*}
& H^{\prime}=\left(C_{1} \frac{\left(11.0 \delta+(1.6) A_{f} q_{f}\right.}{A_{t} \sqrt{k \rho C}+\left(C_{2} \sqrt{\Phi \int_{\min } A_{f} q_{f}}\right.} \quad\left(\mathrm{s}^{1 / 2} \mathrm{~K}\right)\right. \\
& \delta=\left(C_{3} \sqrt{h_{c}^{3} / \Phi_{\min }} \leq 1\right. \\
& \Phi_{\min }=\left(3.78 A_{v} \sqrt{h_{v}}\right. \tag{-1}
\end{align*}
$$

q_{f} is the average fire load density in kg.m ${ }^{-2}, C_{1}=\left(1.06 \times\left(10^{6} \mathrm{~J} \mathrm{~kg}^{-1}, C_{2}=\left(935 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}\right.\right.\right.$ and $C_{3}=\left(0.79 \mathrm{~kg}^{\frac{1}{2}} \mathrm{~m}^{-\frac{3}{2}} \mathrm{~s}^{-\frac{1}{2}}\right.$. The formula for H^{\prime} was obtained from the results of a large number of compartment fire simulations, and does not include random effects. Harmathy (1990-91) presents expressions which allow H^{\prime} to be factored to include the effects of random variables such as fire load density, ventilation and the imperfect reproducibility of fire test results.

B4 EQUAL STRENGTH CRITERIA

Unlike the methods for estimating the equivalent fire exposure which are described in the previous sections, this method seeks to directly satisfy the requirements of the definition of equivalent fire exposure i.e. it seeks to find the time for which the loadbearing capacity of a given structure (or structural element) is identical to the minimum loadbearing capacity of the same structure subjected to a compartment fire. Schleich $(1988,1993)$ gives an example of such a determination of equivalent fire exposure for a composite steel-concrete frame from numerical simulations, and notes that this loadbearing equivalence is more generally useful than the temperature equivalence which is inadequate for structures with a non-uniform temperature distribution.

B5 NOTATION

$A_{f} \quad$ floor area $\left(\mathrm{m}^{2}\right)$
$A_{t} \quad$ total area of the compartment internal surfaces $\left(\mathrm{m}^{2}\right)$
$A_{h} \quad$ area of horizontal openings in the roof $\left(\mathrm{m}^{2}\right)$
$A_{v} \quad$ ventilation area, or area of vertical openings $\left(\mathrm{m}^{2}\right)$
$b_{v} \quad$ factor related to vertical opening area to floor area ratio
c conversion factor which accounts boundary thermal properties (min./MJ. m^{-2})
$H \quad$ normalised heat load ($\mathrm{s}^{1 / 2} \mathrm{~K}$)
$H^{\prime} \quad$ normalised heat load of a building element in a real-world fire ($\mathrm{s}^{1 / 2} \mathrm{~K}$)
$H^{\prime \prime} \quad$ normalised heat load of a building element in a standard test fire $\left(\mathrm{s}^{1 / 2} \mathrm{~K}\right)$
$h_{c} \quad$ ceiling height of the compartment (m)
$k \quad$ thermal conductivity of the compartment boundaries (W/m.K)
$K \quad$ a constant of the order of unity
$K_{f} \quad$ compartment boundary thermal properties coefficient
$q_{f} \quad$ fire load per unit floor area ($\mathrm{kg} \cdot \mathrm{m}^{-2}, \mathrm{MJ} \mathrm{m} \mathrm{m}^{-2}$)
$q_{f f} \quad$ effective fire load per unit floor area (MJ m${ }^{-2}$)
$q_{t} \quad$ fire load per unit area of the compartment bounding surfaces ($\mathrm{MJ} \mathrm{m}{ }^{-2}$)
$q_{t f} \quad$ effective fire load per unit area of the compartment bounding
surfaces (MJ m${ }^{-2}$)
$t_{e} \quad$ equivalent fire exposure (minutes)
$w \quad$ ventilation factor (dimensionless, or $\mathrm{m}^{-1 / 4}$, or $\mathrm{m}^{-0.3}$ depending on definition)
$\alpha_{v} \quad$ ratio of vertical opening area to floor area
$\alpha_{h} \quad$ ratio of horizontal roof opening area to floor area
$\delta(\quad$ fractional heat evolution within a compartment
$\rho C \quad$ heat capacity of the compartment boundaries ($\mathrm{J} / \mathrm{m}^{3} . \mathrm{K}$)
$\Phi_{\text {min }} \quad$ minimum ventilation factor for a compartment (kg.s ${ }^{-1}$)

B6 REFERENCES

AISI (1971). "Fire Protection Through Modern Building Codes", $4{ }^{\text {th }}$ Edition, American Iron and Steel Institute, New York, 347pp.

AS1530, Part 4-1990. "Methods for Fire Tests on Building Materials, Components and Structures : Fire resistance Tests of Elements of Building Construction", Standards Australia.

BIA (1995). "The New Zealand Building Code Handbook and Acceptable Solutions", Second Edition, Building Industry Authority, Wellington, New Zealand.

Buchanan, A.H. (1994), (Editor). "Fire Engineering Design Guide", Centre for Advanced Engineering, University of Canterbury, Christchurch, New Zealand, 203pp..

Butcher, G. (1991). "Fire Resistance of Buildings", Fire Surveyor, Vol. 20, No. 6, Dec. 1991, pp.6-12.

Campbell, J.A. (1986). "Confinement of Fire in Buildings", Fire Protection Handbook, $16{ }^{\text {th }}$ Edition, National Fire Protection Association, Quincy, MA, Section 7, Chapter 9.

CIB W14 (1986). "Design Guide - Structural Fire Safety", Fire Safety Journal, Vol. 10, No. 2, pp.75-137.

Drysdale, J.W. (1949). "Fire Grading of Buildings", Technical Record No. 3, Commonwealth Experimental Building Station.

Drysdale, J.W. (1991). "Fire Protection in Buildings", Technical Report No. 91/1, CSIRO Division of Building, Construction and Engineering (formerly published as Bulletin 9 by the Experimental Building Station, republished with revisions by J.J. Keough).

Eurocode 1 (1994). "Basis of design and actions on structures, Part 2-2: Actions on structures exposed to fire", European Committee for Standardisation, ENV1991-2-2:1994.

Harmathy, T.Z. (1987). "On the Equivalent Fire Exposure", Fire and Materials, Vol.11, No.2, pp.95-104

Harmathy, T.Z. (1990-1991). "Design of Buildings Against Fire Spread (A Review)", Journal of Applied Fire Science, Vol.1, No.1, pp.65-81.

Kawagoe, K. and Sekine, T. (1963). "Estimation of Fire Temperature-Time Curve in Rooms", Occasional Report No. 11, Building Research Institute.

Kawagoe, K. (1967). "Estimation of Fire Temperature-Time Curve in Rooms", BRI Research Paper No. 29, Building Research Institute.

Law, M. (1971). "A Relationship between Fire Grading and Building Design and Contents", Fire Research Note No. 877, Joint Fire Research Organisation.

Law, M. (1973). "Prediction of Fire Resistance", Symposium No.5, Fire-Resistance Requirements for Buildings - A New Approach, Proceedings of the Symposium held in London on 28 September 1971, Dept. of the Environment and Fire Offices’ Committee / Joint Fire Research Organisation.

MOW (1946). "Fire Grading of Buildings, Part I - General Principles and Structural Precautions", Post-War Building Studies No.20, by a joint committee of the Building Research Board of the Department of Scientific \& Industrial Research and the Fire Offices’ Committee, Ministry of Works.

Pettersson, O. (1985). "Characteristics of Fire Exposure - with Particular Reference to Steel Structures", Report LUTVDG/(TVBB-3034), Lund University, Sweden (also published as Chapter II and Appendix A in the "Design Manual on the European Recommendations for the Fire Safety of Steel Structures", Publication No.35, European Convention on Constructional Steelwork, Brussels).

Schleich, J.B. (1988). "Fire Engineering Design of Steel Structures", Steel Construction Today, 2, pp.39-52.

Schleich, J.B. (1993), (Chairman). "International Fire Engineering Design for Steel Structures: State of the Art", prepared by a Working Group for the International Iron and Steel Institute, Brussels.

B7 TEMPERATURES OF COMPARTMENT FIRES

B7.1 INTRODUCTION

The fire temperature and fire duration are the main determinants of the severity of compartment fires, and are dependent on the fire load, the ventilation characteristics and the thermal properties of the building. It is proposed that fire severity be defined by a set of fire temperature histories or time-temperature curves which relate to the building fire load, ventilation and thermal properties. Fire time-temperature curves may be computed using either compartment fire models, or from temperature relations derived from correlation with experiment or compartment fire models.

B7.2 COMPARTMENT FIRE MODELS

B7.2.1 General

The following sections give a brief overview of the main features of compartment fire models. Harmathy and Mehaffey (1983) review and classify fourteen post-flashover models on the basis of a number of principal modelling aspects. Friedman (1991) surveyed a large number of models for compartment fires, as well as models for fire endurance of structural members, evacuation, thermal detectors and fire-sprinkler interaction. Janssens (1992) gives a review of deterministic fire modelling which includes post-flashover (one-zone) models and pre-flashover (multiple-zone) models.

B7.2.2 Post-flashover Models

The following brief description of a post-flashover model is based on the work of Pettersson et al. (1976). The gas temperature in the compartment is assumed to be uniform and is determined on the basis of a heat balance. The rate of heat generated by combustion is equal to the sum of the conductive heat losses through the boundaries (walls, floor and ceiling), convective and radiative heat losses through the openings, and the rate of change of heat energy stored in the gas volume. The rate of change of heat energy stored in the gas volume is usually small and is neglected. The radiative heat losses are equal to the radiation from a black gas volume at the gas temperature through an opening into a black environment at the ambient temperature according to the Stefan-Boltzmann law. The convective losses are equal to the enthalpy carried away by the mass flow rate of the hot gases leaving the room through the opening. The mass flow rate is calculated from an approximate solution to the equations of conservation of mass and momentum at the opening. The heat losses through the boundaries consist of a radiative part and a convective part and are dependent on the gas and boundary temperatures. This means that the heat conduction must be calculated through the thickness of the boundary. At the inner boundary surface the convective heat transfer is assumed to be Newtonian, and the radiative heat transfer is according to the Stefan-Boltzmann law with the emissivity assumed to be constant with temperature. At the outer boundary surface a temperature-dependent surface heat transfer coefficient is used. The rate of heat generated by combustion (heat release rate) is equal to the product of the mass loss rate and the effective heat of combustion of the fuel. This means that it is assumed that all of the fuel is burned
within the compartment. The calculated gas temperatures are highly dependent on the form and magnitude of the heat release rate curve. Some of the relations for mass loss rates and heat release rates in compartment fires with cellulosic fuels from the literature are listed in the section entitled "Mass Loss Rates And Heat Release Rates". The equations of the system are nonlinear and consist of an equation for the heat balance of the gas volume which is solved for the gas temperature, plus a number of equations for the temperatures through the thickness of the boundaries. The system equations are solved at discrete time intervals.

Other post-flashover models may be found in the work of Kawagoe and Sekine (1963), Harmathy (1972a,b), and Babrauskas (1979).

B7.2.3 Pre-flashover Models

Pre-flashover models are primarily concerned with predicting fire growth and smoke spread, and divide a room into a number of volumes or zones, each of which is assumed to be either internally uniform or to follow empirical relations of the space coordinates and time. The following brief description of a multi-room zone model is based on CFAST (Peacock et al. (1993)).

The main zones in a room are a lower layer of cold air and an upper layer of hot gases. Conditions in a room can only vary from floor to ceiling and not horizontally. This is based on experimental observations that generally room conditions stratify into two layers in fires. In addition to the two layers there are other zones for the fire plume and door plume. The model solves a set of equations that predict state variables (temperature, pressure, smoke density and gas concentration) at small increments of time. The equations are derived from conservation equations for energy, mass, and momentum, and the ideal gas law.

A fire is a source of fuel which is released at a specified rate and is converted into heat and mass as it burns. Above the fire, a plume forms which acts a pump for heat and mass from the lower layer to the upper layer. Plumes at vents such as windows and doors act to move heat and mass from the room. Flow through vents is governed by the pressure differences across a vent. The amount of mixing in the plumes is defined by empirical correlations. The analysis does not include a pyrolysis model to predict fire growth and therefore the accuracy of the analysis depends on the accuracy of the specified fuel mass loss rate and heat release rate in modelling an actual fire. The model has two types of fires - an unconstrained fire in which all the burning takes place within the fire plume, and a constrained fire in which burning occurs where there is sufficient oxygen. For a constrained fire where insufficient oxygen is entrained into the fire plume, unburned fuel will successively move into and burn in: the upper layer of the fire room, the plume in the doorway to the next room, the upper layer of the next room, and so on until it is consumed or gets to the outside.

Convective heat transfer occurs from the gas layers to the room surfaces in a direction perpendicular to the wall, ceiling or floor surface. Radiative transfer occurs among the fire, the gas layers and the room surfaces and is a function of the temperature differences and the emissivity of the gas layers and the room surfaces. For the gas layers, the emissivity is a function of the concentration of species such as smoke particulates, carbon dioxide and water.

At the start of the simulation, when the layers are initialised, they are set to ambient conditions. As fuel is pyrolysed, the various species are produced in direct relation to the mass of fuel burned (as specified by the user). Hydrogen cyanide and hydrogen chloride are assumed to be products of pyrolysis whereas carbon dioxide, carbon monoxide, water, and soot are products of combustion. The model keeps track of the mass of each species in each layer, as well as the volume of each layer at any time.

B7.2.4 Mass Loss Rates And Heat Release Rates

Mass loss rates (or rate of burning) and corresponding heat release rates are essential data for the compartment fire models. The literature has been surveyed for methods of prediction of mass loss rate and heat release rate in compartment fires. As the notation used by various researchers has not always been the same, then that listed in the section entitled "Notation" will be adopted.

Some existing relations for mass loss rate (or rate of burning) and/or heat release rate in compartment fires with cellulosic fuels such as wood are:

Kawagoe and Sekine (1963)

Rate of burning	$R=\left(5.5 A_{v} \sqrt{h_{v}} \mathrm{~kg} / \mathrm{min} . \quad\right.$ (ventilation controlled)
	$R=\left(0.092 A_{v} \sqrt{h_{v}} \mathrm{~kg} / \mathrm{s}\right.$
Heat of combustion	$\Delta h=2575 \mathrm{kcal} . / \mathrm{kg}=10.78 \mathrm{MJ} / \mathrm{kg}$
Heat release rate	$Q=R \Delta\left\{h=\left(0.99 A_{v} \sqrt{h_{v}} \mathrm{MW}\right.\right.$
Fire duration time	$t_{f}=\left(M_{0} / R \mathrm{~s}\right.$

where A_{v} is the total opening (or vent) area of the fire compartment (m^{2}), h_{v} is the mean height of the fire compartment openings (m), and M_{0} is the mass of cellulosic fuel in the compartment before the fire (kg).

The rate of burning expression was based on the results of experimental fire tests in model and full-scale rooms (Kawagoe(1958)). The room sizes varied from 0.4 m square x 0.2 m high for small model rooms to approximately 5 m square x 2.6 m high for full scale tests. Generally, the test rooms were constructed of concrete or masonry, but the smallest model rooms were made of steel plate. In all cases, the rooms had vertical openings ie. either windows or doors.

Magnusson and Thelandersson (1970), Pettersson et al. (1976)
Rate of burning

$$
\begin{aligned}
& R=\left(a(t) 330 A_{v} \sqrt{h_{v}} \mathrm{~kg} / \mathrm{h} . \quad\right. \text { (ventilation controlled) } \\
& R=\left(a(t) 0.092 A_{v} \sqrt{h_{v}} \mathrm{~kg} / \mathrm{s}\right.
\end{aligned}
$$

Heat of combustion $\quad \Delta h=2575 \mathrm{kcal} . / \mathrm{kg}=10.78 \mathrm{MJ} / \mathrm{kg}$

Heat release rate

$$
Q=R \Delta\left\{h=\left(a(t) 0.99 A_{v} \sqrt{h_{v}} \mathrm{MW}\right.\right.
$$

A set of dimensionless piecewise linear functions $a(t)$ was determined for a range of fire duration by matching the temperatures output by their compartment model to experimental measurements (see figure below).

The appropriate curve for $a(t)$ depends on the nominal duration of the flame phase defined as

$$
T=\left(q_{t} A_{t} /\left(1500 A_{v} \sqrt{h_{v}}\right) \mathrm{h} .\right.
$$

where q_{t} is the fire load in Mcal. m^{-2} distributed over the total surface area of the compartment $A_{t}\left(\mathrm{~m}^{2}\right)$.

The experimental results were from four test series. The first series was carried out in a test house with concrete floors and concrete or lightweight concrete walls. The fire load consisted of ordinary furniture, and the openings were windows or doors. The floor area was either $10.4 \mathrm{~m}^{2}, 18.8 \mathrm{~m}^{2}$ or $29.2 \mathrm{~m}^{2}$, and the opening factor $A_{v} \sqrt{h_{v}} / A_{t}$ ranged from $0.016 \mathrm{~m}^{\frac{1}{2}}$ to $0.068 \mathrm{~m}^{\frac{1}{2}}$. The second series of tests consisted of three tests of Kawagoe(1958). These tests were performed on a building with one window, and with walls of hollow concrete blocks and concrete floor and roof structures. The floor area was $9 \mathrm{~m}^{2}$, room height 2.5 m , and the opening factor was $0.0467 \mathrm{~m}^{\frac{1}{2}}$. The third series of tests was conducted in a concrete tunnel building of an approximately semicircular cross-section with total bounding surface area $75 \mathrm{~m}^{2}$ and total enclosed volume of $46 \mathrm{~m}^{3}$. As air was supplied by a fan and exhausted by vents in each end wall fictitious opening factors were used for computations based on these tests. The fourth test series was conducted in the lower storey of a three storey steel framed building clad in lightweight concrete elements. The fire room had an external window
and a vertical ventilation duct by-passing the upper stories. The ventilation provided by the duct was estimated to be similar in magnitude to that provided by the window.

Harmathy, T.Z. (1993)
The method is a refinement of that in Harmathy (1972a,b) for cellulosic fuels.
The fire is divided into two time periods - the period of primary or fully developed burning and the period of secondary burning. Both periods are assumed to be of equal length τ. The length of the period of fully developed burning is equal to the duration of the pyrolysis process, and the duration of char-oxidation is equal to 2τ. The time τ in seconds is

$$
\begin{array}{lll}
\tau=39.6 \frac{M_{0}}{\Phi} & \frac{\Phi}{A_{f}}<0.263 & \text { (ventilation controlled) } \\
\tau=\left(\frac{151}{\varphi /}\right. & \frac{\Phi}{A_{f}} \geq 0.263 & \text { (fuel-bed controlled) }
\end{array}
$$

where $\Phi=\rho_{l} A_{v} \sqrt{g h_{v}}$ is the ventilation parameter, $\rho_{a}=1.184 \mathrm{~kg} \mathrm{~m}^{-3}$ is the air density at $25^{\circ} \mathrm{C}, g=9.8 \mathrm{~ms}^{-2}$ is the acceleration due to gravity, $A_{f}=M_{0} \varphi$ is the aggregate surface area of the fuel, and $\varphi \approx 0.13 \mathrm{~m}^{2} \mathrm{~kg}^{-1}$ for conventional furniture. The expressions for τ are based on a large number of experimental observations of burning rate. The majority of the tests were for half-scale or smaller model compartments, along with the full-scale tests of Kawagoe(1958), Butcher et al. (1966) and Butcher et al. (1968). The tests of Butcher et al. were conducted in a test room of $7.6 \mathrm{~m} \times 3.7 \mathrm{~m} \times 2.9 \mathrm{~m}$ high constructed of brick with a concrete floor and ceiling. The fuel was wood cribs which were evenly distributed on the floor. Ventilation was provided by two openings each $3.05 \mathrm{~m} \times 1.83 \mathrm{~m}$ high in one long wall, and the sizes of the openings could be halved by the addition of panels.

The rate of formation of volatile pyrolysis products is

$$
R_{c}=0.87 M_{0} / \tau \mathrm{kg} / \mathrm{s}
$$

and the rate of char-oxidation is

$$
R_{c h}=0.065 M_{0} / \tau \mathrm{kg} / \mathrm{s} .
$$

Then in the period of primary burning, the burning rate is

$$
R=\left(R_{c}+R_{c h}=0.935 M_{0} / \tau \mathrm{kg} / \mathrm{s}\right.
$$

and in the period of secondary burning

$$
R=\left(R_{c h}=0.065 M_{0} / \tau \mathrm{kg} / \mathrm{s} .\right.
$$

The rate of heat released within the compartment is constant over each period. Within the period of primary burning

$$
Q=\left\lvert\, \frac{M_{0}}{\tau}\left(0.87 \delta \xi_{F} \Delta h_{c}-\Delta h_{p}+0.065 \xi_{c h} \Delta h_{c h}\right) \mathrm{MW}\right.
$$

and for the period of secondary burning

$$
Q=\left(\frac{M_{0}}{\tau} 0.065 \xi_{c h} \Delta h_{c h}\right. \text { MW }
$$

where $\xi_{F} \approx 0.8$ is a factor quantifying incomplete combustion of volatile pyrolysis products in the flame, $\boldsymbol{\xi}_{c h} \approx 0.8$ is a factor quantifying incomplete oxidation of char, $\Delta h_{c} \approx 16.7 \mathrm{MJ} \mathrm{kg}^{-1}$ is the heat of combustion of volatile pyrolysis products, $\Delta h_{c h} \approx 33.4 \mathrm{MJ} \mathrm{kg}^{-1}$ is the heat of oxidation of char, $\Delta h_{p} \approx 1.8 \mathrm{MJ} \mathrm{kg}^{-1}$ is the heat of pyrolysis (heat of converting the virgin fuel into volatiles and char), and δ is the fraction of the heat evolved from flaming combustion inside the compartment. The parameter δ is determined from

$$
\begin{array}{ll}
\delta=1 & h_{F} \leq h_{C} \\
\delta=\left(\frac{h_{C}}{h_{F}}\right)^{3 / 2} & h_{F}>\left(h_{C}\right.
\end{array}
$$

where $h_{C}(\mathrm{~m})$ is the height of the compartment and $h_{F}(\mathrm{~m})$ is a hypothetical flame height for compartment fires given by

$$
\begin{array}{ll}
h_{F}=1.17 \Phi^{\frac{1}{3}} & \frac{\Phi(}{A_{f}}<0.263 \\
h_{F}=0.75 A_{f}^{\frac{1}{3}} & \\
\frac{\Phi}{A_{f}} \geq 0.263 .
\end{array}
$$

Babrauskas and Williamson (1978), Babrauskas $(1981,1988)$
Rate of burning -
i) ventilation controlled: $\quad R=0.12 A_{v} \sqrt{h_{v}} \mathrm{~kg} / \mathrm{s} \quad$ (constant)
ii) fuel-bed controlled: $R=\left(\frac{4 v_{p}}{d} \sqrt{M_{0} M} \mathrm{~kg} / \mathrm{s} \quad\right.$ (diminishing)
where $v_{p}=2.2 \times 10^{-6} d^{-0.6} \mathrm{~ms}^{-1}$ (for $d \leq 0.05 \mathrm{~m}$) is the fuel (wood) surface regression velocity, M is the total mass remaining at any time (kg), and d is the original stick thickness (m) for square sticks.

$$
\text { Heat of combustion } \quad \Delta h=12 \mathrm{MJ} / \mathrm{kg}
$$

$$
Q=R \Delta h
$$

Law (1983)
Rate of burning

$$
R=\left(0 . 1 8 \sqrt { (W / D) } \left(1-\left(e^{-0.036 \eta}\right) A_{v} \sqrt{h_{v}} \mathrm{~kg} / \mathrm{s}\right.\right.
$$

Effective fire duration

$$
t_{f}=\left(M_{0} / R \mathrm{~s}\right.
$$

where $\eta=\left(\left(A_{t}-\left(A_{v}\right) / A_{v} \sqrt{h_{v}}, \mathrm{~W}\right.\right.$ is the width of the compartment parallel to the opening (m), and D is the depth of the compartment normal to the opening (m). The equation for rate of burning is for ventilation controlled fires, and is based on a large program of experimental fires carried out by eight laboratories for the Conseil International du Batiment (CIB) (Thomas and Heselden(1972), Heselden(1973)). The fire compartments were small asbestos-lined boxes with heights ranging from 0.5 m to 1.5 m and plan dimensions ranging from $0.5 \mathrm{~m} \times 1 \mathrm{~m}$ to 6 m square. Ventilation was provided by a full-height opening in one wall of either $1 / 4,1 / 2$ or the full area of the wall. Wood cribs of various arrangements were used as fuel.

Thomas, P.H. (1988)

$$
\begin{array}{ll}
\text { Rate of burning } \quad R & =\left(0.02 \sqrt{\left(A_{t}-\left(A_{v}\right)(W / D) A_{v} \sqrt{h_{v}}\right.} \mathrm{kg} / \mathrm{s}\right. \\
R & =\left(0.02 \sqrt{\frac{\left(A_{t}-\left(A_{v}\right)\right.}{A_{v} \sqrt{h_{v}}}\left(\frac{W}{D}\right)} A_{v} \sqrt{h_{v}} \mathrm{~kg} / \mathrm{s} .\right.
\end{array}
$$

The rate of burning expression was derived by correlation with the CIB experiments (Thomas and Heselden(1972), Heselden(1973)). Burning rates for two larger compartments (Hagen et al. (1986)) were compared with the extrapolation of the CIB data. The larger compartment ($20.4 \mathrm{~m} \times 7.2 \mathrm{~m} \times 3.6 \mathrm{~m}$ high) had walls, floor and ceiling of lightweight concrete. The fuel in the experiments was wood cribs with a maximum total mass of 2500 kg . Ventilation was provided by an opening located centrally in the long wall of the form of a window or door with area $1.5 \mathrm{~m}^{2} \leq\left(A_{v} \leq 7.8 \mathrm{~m}^{2}\right.$ and ventilation factor $1 \mathrm{~m}^{5 / 2} \leq\left(A_{v} \sqrt{h_{v}} \leq 13.5 \mathrm{~m}^{5 / 2}\right.$. The smaller compartment $(7.8 \mathrm{~m} \times 7.2 \mathrm{~m}$ x 3.6 m high) was the same as the larger compartment but reduced in length. The results for the larger compartment supported the expression, while the smaller compartment shows a lesser effect of $\left(A_{t}-\left(A_{v}\right) / A_{v} \sqrt{h_{v}}\right.$ than implied by the expression.

Poon (1995)
The heat release curve has three stages:
i) Growth stage

$$
\text { Heat release rate } \quad Q=\alpha t^{2} \mathrm{MW}
$$

where $\alpha=\left(0.1876 \times\left(10^{-3} \mathrm{MW} / \mathrm{s}^{2}\right.\right.$ is the fire intensity factor, and t is the time (s).
ii) Uniform stage (ventilation-controlled)

$$
\text { Rate of burning } \quad R=\left(0.12 A_{v} \sqrt{h_{v}} \mathrm{~kg} / \mathrm{s}\right.
$$

Heat release rate $\quad Q=R \Delta h$

$$
\text { Heat of combustion } \quad \Delta h=10.5 \mathrm{MJ} / \mathrm{kg}
$$

iii) Decay stage (fuel-bed controlled)

$$
\text { Rate of burning } \quad R=\left(0 . 0 0 1 2 M _ { 0 } \left(\left(M / M_{0}\right)^{\frac{1}{2}} \mathrm{~kg} / \mathrm{s}\right.\right.
$$

where M is the mass remaining at any time, M_{0} is the initial mass, and the heat release rate is by the same expression as the uniform stage.

B7.2.5 Thermal Feedback

None of the compartment fire models with cellulosic fuels mentioned in the previous sections included the effect on the rate of burning of thermal feedback from the burning gases to the fuel. Thomas (1975) suggested that thermal feedback should be included in compartment fire models. In response to Thomas, Harmathy (1975) states "Experimental facts strongly support the view that, in the case of cellulosic fuel fires, thermal feedback from the flames to the fuel need not be considered in formulating either the compartment temperature (or energy balance for the compartment) or the rate of burning. For liquid fuels and solid fuels decomposing without leaving behind combustible solid pyrolysis products (probably all plastics), thermal feedback does play a significant part in the rate of burning, but its direct effect on the energy balance for the compartment is insignificant". He argues that thermal feedback is impossible with a burning wood pile as the temperature of the pile is higher than the average temperature of the flames so the flames moderate heat losses from the pile rather than supply heat to it. The lack of thermal feedback is confirmed by the experimental observations that over a wide range of conditions the rate of burning is roughly proportional to the rate of airflow into the compartment, and that the rate of burning depends relatively little on the average compartment temperature.

B8 TEMPERATURE EXPRESSIONS

A number of authors have produced closed-form expressions either for the fire timetemperature curves or the peak fire temperatures.

Lie (1974, 1992) developed temperature curves based on results of the analysis of Kawagoe and Sekine (1963) for ventilation-controlled fires. The expression is

$$
T_{f}=250(10 F)^{\frac{0.1}{F^{0.3}}} e^{-F^{2 t}}\left[3 \left(1-\left(e^{-0.6 t}\right)-\left(1-e^{-3 t}\right)+4\left(1-\left(e^{-12 t}\right)\right]+C\left(\frac{600}{F}\right)^{0.5}\right.\right.
$$

where T_{f} is the fire temperature $\left({ }^{\circ} \mathrm{C}\right), \mathrm{t}$ is time $(\mathrm{h}), \mathrm{C}$ is a constant which depends on the boundary material properties ($C=0$ for heavy materials $\rho \geq 1600 \mathrm{~kg} / \mathrm{m}^{3}, C=1$ for light materials $\left.\rho<1600 \mathrm{~kg} / \mathrm{m}^{3}\right)$, and $F=A_{v} \sqrt{h_{v}} / A_{t}\left(\mathrm{~m}^{\frac{1}{2}}\right)$ is the opening factor. The expression is valid for $t \leq 1+0.08 / F$ and $0.01 \leq F<0.15$. If $t>1+0.08 / F$ then a value of $t=1+0.08 / F$ should be used, and if $F>0.15$ then $F=0.15$ should be used. The temperature during the decay period is

$$
\left.T_{f}=-600\left(\frac{t}{\tau}\right)^{1}\right)+T_{\tau}
$$

where τ is the time at which decay begins (h), T_{τ} is the temperature (${ }^{\circ} \mathrm{C}$) at time $t=\tau$, and $t>\tau$ and $T_{f} \geq 20^{\circ} \mathrm{C}$. The decay period begins at the time given by the nominal fire duration

$$
\tau=\int \frac{q_{t} A_{t}}{330 A_{v} \sqrt{h_{v}}}=\int \frac{q_{t}}{330 F}
$$

where q_{t} is the fire load per unit area of the bounding surfaces $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$.
Babrauskas (1981) expressed the fire temperature T_{f} as

$$
T_{f}=\left(T_{\infty}+\left(T^{*}-\left(T_{\infty}\right) \cdot \theta_{1} \cdot \theta_{2} \cdot \theta_{3} \cdot \theta_{4} \cdot \theta_{5}\right) /\right.
$$

where T_{∞} is the ambient temperature, $T^{*}=1725^{\circ} \mathrm{C}$ is an empirical constant associated with adiabatic combustion, and the factors θ_{1} to θ_{5} have values which can range from 0 to 1 and are associated with burning rate stoichiometry, boundary steady-state losses, boundary transient losses, opening height and combustion efficiency, respectively. Expressions for the factors θ_{1} to θ_{5} may be found in the reference. Either steady-state or transient solutions may be obtained.

Wickstrom $(1981 / 82,1985)$ developed a method which allows the approximate postflashover fire temperatures to be expressed as a single curve which is then modified
by scaling the time to take into consideration ventilation conditions and wall properties of the compartment. The temperature change θ_{f} is

$$
\theta_{f}=\sum_{i=0}^{3} B_{i} \exp \left(-\beta_{i} t^{*}\right)
$$

where t^{*} is the modified time (h), and $B_{i}\left({ }^{\circ} \mathrm{C}\right)$ and $\beta_{i}\left(\mathrm{~h}^{-1}\right)$ are constants. The earlier paper used values of B_{i} and β_{i} which gave a good comparison with the computed results of Magnussen and Thelandersson (1970) and Pettersson et. al (1976). The later paper used values of B_{i} and β_{i} which gave a good approximation to the ISO834 standard furnace curve and are tabulated below.

i	0	1	2	3
$B_{i}\left({ }^{\circ} \mathrm{C}\right)$	1325	-430	-270	-625
$\beta_{i}\left(\mathrm{~h}^{-1}\right)$	0	0.2	1.7	19

The modified time is defined as

$$
t^{*}=\gamma^{2} t
$$

where

$$
\gamma=\frac{A_{v} \sqrt{h_{v}} / A_{t}}{\sqrt{k \rho c}} \frac{(\sqrt{k \rho c})_{A}}{\left(A_{v} \sqrt{h_{v}} / A_{t}\right)_{0.04}}
$$

and $\left(A_{v} \sqrt{h_{v}} / A_{t}\right)_{0.04}=0.04 \mathrm{~m}^{\frac{1}{2}}$ is taken to be the standard opening factor and $(\sqrt{k \rho c})_{A}=1165 \mathrm{Ws}^{\frac{1}{2}} \mathrm{~m}^{-2} \mathrm{~K}^{-1}$ is the thermal inertia of a standard wall material in a fire compartment. The fire duration can be estimated as for Lie (1974) above and then the modified duration t_{d}^{*} calculated according to the modified time expression.
Wickstrom (1981/82) suggests that the following linear temperature decreases based on ISO834 may be used in the decay phase (in modified time)

$$
\begin{array}{ll}
625^{\circ} \mathrm{C} / \mathrm{h} & \text { for } t_{d}^{*} \leq 0.5 \mathrm{~h} \\
250\left(3-t_{d}^{*}\right)^{\circ} \mathrm{C} / \mathrm{h} & \text { for } 0.5<t_{d}^{*}<2 \mathrm{~h} \\
250^{\circ} \mathrm{C} / \mathrm{h} & \text { for } t_{d}^{*} \geq 2 \mathrm{~h} .
\end{array}
$$

Based on many experimental fires (CIB program, Thomas and Heselden(1972), Heselden(1973)), Law (1983) derived a relation between the average temperature during the fully developed period of fires in compartments $T_{f}\left({ }^{\circ} \mathrm{C}\right)$ and the parameters $\eta=\left(A_{t}-A_{v}\right) / A_{v} \sqrt{h_{v}}$ and $\psi=L / \sqrt{A_{v}\left(A_{t}-A_{v}\right)}$ where L is the fire load in kg wood,

$$
T_{f}=T_{f(\max)}\left(1-e^{-0.05 \psi}\right)
$$

and

$$
T_{f(\max)}=6000 \frac{\left(1-e^{-0.1 \eta}\right)}{\sqrt{\eta}} .
$$

Eurocode 1 (1995) incorporates "parametric" curves for calculating the temperatures of hot gases both for fires within compartments and for fires issuing from the windows of buildings. The temperature development predicted for the fire is normalised against the details of the particular compartment so that it takes the form of the "general natural fire curve" - this is the approach developed by Wickstrom (1981/82, 1985). The "general natural fire curve" is similar to the ISO834 curve but reaches a maximum temperature after a specific duration and includes a cooling part. The curves for temperatures within a compartment are valid for fire compartments up to $100 \mathrm{~m}^{2}$ of floor area, without openings in the roof, for a maximum compartment height of 4 m , and with mainly cellulosic type fuel loads. The temperature $T_{f}\left({ }^{\circ} \mathrm{C}\right)$ in the heating phase is given by

$$
\left.T_{f}=132 \Phi \quad 1-0.324 e^{-0.2 t^{*}}-0.204 e^{-1.7 t^{*}}-0.472 e^{-19 t^{*}}\right)
$$

where $t^{*}=t \Gamma(\mathrm{~h})$, t is time (h), $\Gamma=(O / b)^{2} /(0.04 / 1160)^{2}, O=A_{v} \sqrt{h_{v}} / A_{t}\left(\mathrm{~m}^{1 / 2}\right)$ is the opening factor with $0.02 \leq O \leq 0.20 \mathrm{~m}^{1 / 2}$, and $b=\sqrt{k \rho c}\left(\mathrm{Jm}^{-2} \mathrm{~s}^{-1 / 2} \mathrm{~K}^{-1}\right)$ with $1000 \leq b \leq 2000 \mathrm{Jm}^{-2} \mathrm{~s}^{-1 / 2} \mathrm{~K}^{-1}$. The temperature given by the above expression should probably be the temperature change from the initial temperature. If the boundary consists of layers of different materials then

$$
b=\sqrt{\sum s_{i} c_{i} k_{i}} / \sqrt{\sum\left(s_{i} c_{i} k_{i} / b_{i}^{2}\right)}
$$

where s_{i} is the thickness of layer i, c_{i} is the specific heat of layer i, k_{i} is the thermal conductivity of layer i , and $b_{i}=\sqrt{k_{i} \rho_{i} c_{i}}$. To account for different material in walls, ceiling and floor then

$$
b=\sum b_{j} A_{t j} / \sum A_{t j}
$$

where $A_{t j}$ is the area of enclosure including openings with the thermal property b_{j}. The temperature $\left({ }^{\circ} \mathrm{C}\right)$ in the cooling phase is given by

$$
\begin{array}{ll}
T_{f}=T_{f(\max)}-625\left(t^{*}-t_{d}^{*}\right) & \text { for } t_{d}^{*} \leq 0.5 \mathrm{~h} \\
T_{f}=T_{f(\max)}-250\left(3-t_{d}^{*}\right)\left(t^{*}-t_{d}^{*}\right) & \text { for } 0.5<t_{d}^{*}<2 \mathrm{~h} \\
T_{f}=T_{f(\max)}-250\left(t^{*}-t_{d}^{*}\right) & \text { for } t_{d}^{*} \geq 2 \mathrm{~h}
\end{array}
$$

where $T_{f(\text { max })}\left({ }^{\circ} \mathrm{C}\right)$ is the maximum temperature in the heating phase for $t^{*}=t_{d}^{*}$, $t_{d}^{*}=0.13 \times 10^{-3} q_{t} \Gamma / O(\mathrm{~h}), q_{t}=q_{f} A_{f} / A_{t}$ is the fire load density related to the surface area of the enclosure $\left(\mathrm{MJ} / \mathrm{m}^{2}\right)$, and q_{f} is the fire load density related to the floor area ($\mathrm{MJ} / \mathrm{m}^{2}$).

B9 NOTATION

$A_{f} \quad$ aggregate surface area of the fuel $\left(\mathrm{m}^{2}\right)$
$A_{t} \quad$ total area of the enclosing area surfaces including openings (m^{2})
$A_{v} \quad$ total opening (or vent) area of the fire compartment (m^{2})
$a(t) \quad$ piecewise linear function of time t
$B_{i} \quad$ fire curve constants (${ }^{\circ} \mathrm{C}$)
b thermal inertia of boundary material $\left(\mathrm{Jm}^{-2} \mathrm{~s}^{-1 / 2} \mathrm{~K}^{-1}\right)$
C a constant which depends on the boundary material properties
$D \quad$ depth of the compartment normal to the opening (m)
d original stick thickness (m)
$F \quad$ opening factor $\left(\mathrm{m}^{\frac{1}{2}}\right)$
$g \quad$ acceleration due to gravity $\left(\mathrm{ms}^{-2}\right)$
$h_{C} \quad$ height of the compartment (m)
$h_{F} \quad$ hypothetical flame height for compartment fires (m)
$h_{v} \quad$ mean height of the fire compartment openings (m)
$L \quad$ fire load (kg wood)
M total mass remaining at any time (kg)
M_{0} mass of cellulosic fuel in the compartment before fire (kg)
$\mathrm{O} \quad$ opening factor $\left(\mathrm{m}^{\frac{1}{2}}\right)$
$q_{f} \quad$ fire load density related to the floor area of the compartment ($\mathrm{MJ} / \mathrm{m}^{2}$)
$q_{t} \quad$ fire load density related to the surface area of the compartment $\left(\mathrm{MJ} / \mathrm{m}^{2}, \mathrm{~kg} / \mathrm{m}^{2}\right.$,
Mcal. $/ \mathrm{m}^{2}$)
$R \quad$ mean rate of burning ($\mathrm{kg} / \mathrm{h}, \mathrm{kg} / \mathrm{min}$., kg / s)
$R_{c} \quad$ rate of formation of volatile pyrolysis products (kg / s)
$R_{c h} \quad$ rate of char-oxidation (kg / s)
$T \quad$ nominal duration of the flame phase of the fire (h)
$T_{f} \quad$ fire temperature $\left({ }^{\circ} \mathrm{C}\right)$
$T_{f(\max)}$ maximum fire temperature for a given compartment geometry (${ }^{\circ} \mathrm{C}$)
$T_{\tau} \quad$ temperature at the start of the decay stage $\left({ }^{\circ} \mathrm{C}\right)$
$T_{\infty} \quad$ ambient temperature (${ }^{\circ} \mathrm{C}$)
$T^{*} \quad$ an empirical constant associated with adiabatic combustion $\left({ }^{\circ} \mathrm{C}\right)$
$t \quad$ time (s, min., h).
$t_{f} \quad$ fire duration time (s)
$t^{*} \quad$ modified time (h)
$t_{d}^{*} \quad$ modified duration (h)
$v_{p} \quad$ fuel (wood) surface regression velocity (ms^{-1})
$W \quad$ width of the compartment parallel to the opening (m)
$\alpha \quad$ fire intensity factor (MW/s s^{2})
$\beta_{i} \quad$ fire curve constants (h^{-1})
$\gamma \quad$ time scaling or modifying parameter
$\Delta h \quad$ calorific value or heat of combustion of fuel ($\mathrm{kcal} . / \mathrm{kg}, \mathrm{MJ} / \mathrm{kg}$)
$\Delta h_{c} \quad$ heat of combustion of volatile pyrolysis products ($\mathrm{MJ} \mathrm{kg}^{-1}$)
$\Delta h_{c h} \quad$ heat of oxidation of char ($\mathrm{MJ} \mathrm{kg}^{-1}$)
$\Delta h_{p} \quad$ heat of pyrolysis ($\mathrm{MJ} \mathrm{kg}{ }^{-1}$)
$\delta \quad$ fraction of the heat evolved from flaming combustion inside the compartment
$\eta \quad$ parameter, similar to inverse of opening factor $\left(\mathrm{m}^{-\frac{1}{2}}\right)$
$\theta_{f} \quad$ temperature change $\left({ }^{\circ} \mathrm{C}\right)$
$\theta_{1}-\theta_{5}$ reduction factors
$\Gamma \quad$ time scaling or modifying parameter
$\xi_{c h} \quad$ factor quantifying incomplete oxidation of char
$\xi_{F} \quad$ factor quantifying incomplete combustion of volatile pyrolysis products in the flame
$\rho \quad$ compartment boundary material density $\left(\mathrm{kg} \mathrm{m}^{-3}\right)$
$\rho_{a} \quad$ air density at $25^{\circ} \mathrm{C}\left(\mathrm{kg} \mathrm{m}^{-3}\right)$
$\tau \quad$ duration of either primary or secondary burning phase (s)
$\tau \quad$ time at which decay begins (h)
$\Phi \quad$ ventilation parameter (kg / s)
$\varphi \quad$ fuel surface area per unit mass ($\mathrm{m}^{2} \mathrm{~kg}^{-1}$)
$\psi \quad$ fire load parameter $\left(\mathrm{kg} \mathrm{m}^{-2}\right)$

Harmathy, T.Z. (1972a). "A New Look at Compartment Fires, Part I", Fire Technology, Vol.8, No.3, pp.196-219.

Harmathy, T.Z. (1972b). "A New Look at Compartment Fires, Part II", Fire Technology, Vol.8, No.4, pp.326-351.

Harmathy, T.Z. (1975). "The Role of Thermal Feedback in Compartment Fires", Fire Technology, Vol. 11, No. 1, pp.48-54.

Harmathy, T.Z. (1993). "Fire Safety Design and Concrete", Longman Scientific and Technical, 412pp.

Harmathy, T.Z. and Mehaffey, J.R. (1983). "Post-flashover Compartment Fires", Fire and Materials, Vol.7, No.2, pp.49-61.

Heselden, A.J.M. (1973). "Results of an International Co-operative Programme on FullyDeveloped Fires in Single Compartments", Joint Fire Research Organisation, Paper 1, Symposium No.5, Fire-Resistance Requirements for Buildings - A New Approach, pp.1-13.

Janssens, M. (1992). "Room Fire Models", Chapter 6, "Heat Release in Fires", V. Babrauskas and S.J. Grayson, eds., Elsevier Applied Science, London, 644pp..

Peacock, R.D., Forney, G.P., Reneke, P.A., Portier, R.M., and Jones, W.W. (1993). "CFAST, the Consolidated Model of Fire Growth and Smoke Transport", NIST Technical Note 1299, National Institute of Standards and Technology, Gaithersburg, MD 20899.

Pettersson, O., Magnusson, S.E., and Thor, J. (1976). "Fire Engineering Design of Steel Structures", Bulletin 52, Division of Structural Mechanics and Concrete Construction, Lund Institute of Technology, Sweden.

Poon, S.L. (1995). "A Design Fire for Use in Predicting the Performance of Exposed Structural Steel Members", Fourth Pacific Structural Steel Conference, Singapore, Vol. 1 Steel Structures, eds. N.E. Shanmugam and Y.S. Choo, Pergamon, pp. 749-764.

Thomas, P.H. (1975). "Old and New Looks at Compartment Fires", Fire Technology, Vol. 11, No. 1, pp.42-47.

Thomas, P.H. (1988). "Some Notes on Fires in Compartments", Report LUTVDG/(TVBB3033), Department of Fire Safety Engineering, Lund University, Sweden.

Thomas, P.H., and Heselden, A.J.M. (1972). "Fully-Developed Fires in Single Compartments. A Co-operative Research Programme of the Conseil International du Batiment", Joint Fire Research Organisation, Fire Research Note No. 923.

Wickstrom, U. (1981/82). "Temperature Calculation of Insulated Steel Columns Exposed to Natural Fire", Fire Safety Journal, Vol.4, pp.219-225.

Wickstrom, U. (1985). "Application of the Standard Fire Curve for Expressing Natural Fires for Design Purposes", Fire Safety: Science and Engineering, ASTM STP 882, T.Z. Harmathy, ed., American Society for Testing and Materials, Philadelphia, pp.145-159.

APPENDIX C

FIRE LOADS

C1 INTRODUCTION

The fire load (quantity of combustible materials) is one of the factors that may influence the severity of a fire. A number of surveys of fire load for various occupancies have been conducted in various overseas countries. The results are summarised in the following sections. Proposed fire loads for the building classifications of the Building Code of Australia are tabulated based on these surveys.

Total fire loads consist of permanent (or fixed) fire loads and variable (or movable) fire loads. Permanent fire loads are those combustible materials which have a negligible variation during the service life of a structure and comprise building materials including the load-bearing structure, linings, finishes, and permanently installed devices. Variable fire loads are all combustible materials that may vary during the service life of a structure eg. furniture, storage goods, movable equipment.

Generally, in the following sections, the fire load is in terms of fire load density ie. fire load per unit floor area. Some data is in terms of the fire load per unit area of the surface bounding the fire compartment and is noted as such.

C2 AISI (1971) - U.S. DATA

AISI (1971) collects data on fire loads from the following references:
"Fire-Resistance Classifications of Building Constructions", Building Materials and Structures Report 92 (BMS 92), National Bureau of Standards, Washington, D.C., 1942.

Ingberg, S.H., Dunham, J.W., and Thompson, J.P. "Combustible Contents in Buildings", Building Materials and Structures Report 149 (BMS 149), National Bureau of Standards, Washington, D.C., 1957.

Bryson, J.O., and Gross, D. "Techniques for the Survey and Evaluation of Live Floor Loads and Fire Loads in Modern Office Buildings", Building Science Series 16 (BSS 16), National Bureau of Standards, Washington, D.C., 1967.

Although it is not stated, it seems that inventory techniques were used to obtain the survey data as "the weights of combustible items were obtained in sufficient number to enable the total weight within the areas surveyed to be determined". Allowance for combustible finishes (eg. wood trim, windows, shelves) was made by including one-half of their weights. Wood floors were included in the fire load, but not the weights of any framing members or structural parts of the buildings.

Fire loads for residential occupancies (dwellings and apartment buildings) from BMS 92 (see also Issen (1978)):

	Average fire load density							
	Movable property		Floors		Exposed woodwork other than floors**		Total	
	($\mathrm{b} / \mathrm{ft}^{2}$)	$\left(\mathrm{MJ} / \mathrm{m}^{2}\right)^{*}$	($\mathrm{lb} / \mathrm{ft}^{2}$)	$\left(\mathrm{MJ} / \mathrm{m}^{2}\right)^{*}$	($\mathrm{b} / \mathrm{ft}^{2}$)	$\left(\mathrm{MJ} / \mathrm{m}^{2}\right)^{*}$	($\mathrm{lb} / \mathrm{ft}^{2}$)	$\left(\mathrm{MJ} / \mathrm{m}^{2}\right)^{*}$
Bedrooms								
(including closets)	5.0	450	2.8	250	2.6	240	10.4	940
Dining rooms	3.2	290	2.0	180	2.0	180	7.2	650
Hallways	1.0	90	3.0	270	6.5	590	10.5	950
Kitchens	1.2	110	2.5	230	3.1	280	6.8	620
Living rooms	3.9	350	2.4	220	1.8	160	8.1	740
Store rooms (apartment houses)	6.4	580	0.5	50	0.3	30	7.2	650
Closets								
Clothes	5.1	460	2.7	250	11.6	1050	19.4	1760
Linen	11.7	1060	3.0	270	21.4	1940	36.1	3280
Kitchen	4.0	360	3.0	270	23.2	2110	30.2	2740
Entire apartment or residence (average for all areas surveyed)	3.4	310	2.6	240	2.8	250	8.8	800

* conversion based on $1 \mathrm{lb} / \mathrm{ft}^{2}=4.88 \mathrm{~kg} / \mathrm{m}^{2}$ and heat of combustion $=18.6 \mathrm{MJ} / \mathrm{kg}$
** includes doors, windows, baseboards, mouldings, trim, shelving, etc.
Total fire load density includes furnishings as well as floor finish, doors, windows, trim, frames, mouldings, shelving, etc.

Fire loads for educational occupancies (based on school buildings) from BMS 92:

	Average fire load density							
	Movable property		Floors		Exposed woodwork other than floors**		Total	
	($\mathrm{lb} / \mathrm{ft}^{2}$)	$\left(\mathrm{MJ} / \mathrm{m}^{2}\right)^{*}$	(lb/ft ${ }^{2}$)	$\left(\mathrm{MJ} / \mathrm{m}^{2}\right)^{*}$	($\mathrm{lb} / \mathrm{ft}^{2}$)	$\left(\mathrm{MJ} / \mathrm{m}^{2}\right)^{*}$	($\mathrm{lb} / \mathrm{ft}^{2}$)	$\left(\mathrm{MJ} / \mathrm{m}^{2}\right)^{*}$
Typical classrooms	2.7	250	2.1	190	2.1	190	6.9	630
Laboratories								
Biology	5.0	450	2.2	200	1.2	110	8.4	760
Chemistry	5.1	460	2.1	190	1.2	110	8.4	760
Food and clothing	4.4	400	1.8	160	2.2	200	8.4	760
Physics	3.3	300	2.6	240	1.4	130	7.3	660
Mechanical drawing	6.0	540	2.6	240	2.0	180	10.6	960
Bookkeeping and typewriting	6.7	610	2.6	240	2.2	200	11.5	1040
Art rooms	6.5	590	1.8	160	1.5	140	9.8	890
Geography, music and lecture rooms	2.4	220	3.7	340	2.3	210	8.4	760
Library (stack room)	28.4	2580	2.1	190	5.4	490	35.9	3260
Lunch room	2.6	240	2.6	240	1.5	140	6.7	610
Woodworking shops	6.1	550	2.6	240	0.7	60	9.4	850
Storerooms								
Janitor's	35.9	3260	0.9	80	1.5	140	38.3	3480
Lumber	43.7	3970	1.3	120	0.7	60	45.7	4150
Paint	4.0	360	2.6	240	13.1	1190	19.7	1790
Paper	97.5	8850	0.0	0	0.7	60	98.2	8910
Textbooks	172.3	15640	0.7	60	0.6	50	173.6	15760
Approximate average for total useable area of six schools surveyed							7.2***	650***

* conversion based on $1 \mathrm{lb} / \mathrm{ft}^{2}=4.88 \mathrm{~kg} / \mathrm{m}^{2}$ and heat of combustion $=18.6 \mathrm{MJ} / \mathrm{kg}$
** includes doors, windows, baseboards, mouldings, trim, etc.
*** Combustibles that are part of the structural framing are not included. Storerooms and library stacks are excluded as they are storage occupancies not educational occupancies; the combustible content for "office and files" was taken to be 25 percent of the total.

Fire loads for institutional occupancies (based on hospitals) from BMS 92:

	Average fire load density					
	Movable property		Exposed woodwork and floors**		Total	
	($\mathrm{lb} / \mathrm{ft}^{2}$)	$\left(\mathrm{MJ} / \mathrm{m}^{2}\right)^{*}$	($\mathrm{lb} / \mathrm{ft}^{2}$)	$\left(\mathrm{MJ} / \mathrm{m}^{2}\right)^{*}$	($\mathrm{lb} / \mathrm{ft}^{2}$)	$\left(\mathrm{MJ} / \mathrm{m}^{2}\right)^{*}$
Rooms (single)	0.5	50	3.2	290	3.7	340
Corridors	0	0	2.6	240	2.6	240
Waiting rooms	1.7	150	1.5	140	3.2	290
Janitor's closets and supplies	3.1	280	3.4	310	6.5	590
Doctor's offices	5.7	520	2.9	260	8.6	780
Nurses' offices and rooms	3.1	280	1.9	170	5.0	450
Nurses' infirmary	0.8	70	2.2	200	3.0	270
Diet kitchens and dining rooms	1.2	110	2.4	220	3.6	330
Laundries	4.4	400	0.6	50	5.0	450

Laundries and clothes storage	12.5	1130	0.6	50	13.1	1190
Dormitories	0.8	70	2.0	180	2.8	250
Pharmacy, dispensary and stores	5.8	530	1.9	170	7.7	700
Lockers, toilets and barber shops	0.2	20	1.2	110	1.4	130
Approximate average for entire useable floor area of three hospital buildings surveyed					5.7 ***	520***

* conversion based on $1 \mathrm{lb} / \mathrm{ft}^{2}=4.88 \mathrm{~kg} / \mathrm{m}^{2}$ and heat of combustion $=18.6 \mathrm{MJ} / \mathrm{kg}$
** combustible floor finish where present was $1 / 4$ inch thick linoleum (assumed equivalent to $1 \mathrm{lb} / \mathrm{ft}^{2}$ wood); doors, windows, trim, mouldings, baseboards, etc. are included.
*** The approximate average was noted to be somewhat high.
Note: For the hospitals surveyed, in almost 90% of the floor area the combustible contents averaged less than $5 \mathrm{lb} / \mathrm{ft}^{2}$ $\left(450 \mathrm{MJ} / \mathrm{m}^{2}\right)$ and a density greater than $10 \mathrm{lb} / \mathrm{ft}^{2}\left(910 \mathrm{MJ} / \mathrm{m}^{2}\right)$ existed in only 4% of the total floor area. Jails and similar institutions contain virtually no combustible materials.

Fire loads for assembly occupancies from BMS 92:

	Average fire load density					
	Movable property		Exposed woodwork and floors**		Total	
	($\mathrm{lb} / \mathrm{ft}^{2}$)	$\left(\mathrm{MJ} / \mathrm{m}^{2}\right)^{*}$	($\mathrm{lb} / \mathrm{ft}^{2}$)	$\left(\mathrm{MJ} / \mathrm{m}^{2}\right)^{*}$	($\mathrm{lb} / \mathrm{ft}^{2}$)	$\left(\mathrm{MJ} / \mathrm{m}^{2}\right)^{*}$
Auditoriums	1.0	90	4.6	420	5.6	510
Gymnasiums	0.3	30	7.1	640	7.4	670
School lunchrooms	2.6	240	4.1	370	6.7	610

* conversion based on $1 \mathrm{lb} / \mathrm{ft}^{2}=4.88 \mathrm{~kg} / \mathrm{m}^{2}$ and heat of combustion $=18.6 \mathrm{MJ} / \mathrm{kg}$

Note: Exhibition halls may contain fire loads greater than for mercantile occupancies.
Fire loads for business occupancies from BSS 16 (based on one building of 221 rooms):

	Average fire load density					
	Movable property		Interior finish**		Total	
	($\mathrm{lb} / \mathrm{ft}^{2}$)	$\left(\mathrm{MJ} / \mathrm{m}^{2}\right)^{*}$	($\mathrm{lb} / \mathrm{ft}^{2}$)	$\left(\mathrm{MJ} / \mathrm{m}^{2}\right)^{*}$	($\mathrm{lb} / \mathrm{ft}^{2}$)	$\left(\mathrm{MJ} / \mathrm{m}^{2}\right)^{*}$
Offices	2.4	220	1.4	130	3.8	340
Storerooms	2.7	250	1.5	140	4.2	380
Conference room	2.5	230	2.2	200	4.7	430
Lobbies	0.1	10	1.0	90	1.1	100
Libraries	7.3	660	1.0	90	8.3	750
File rooms	6.7	610	0.8	70	7.5	680

* conversion based on $1 \mathrm{lb} / \mathrm{ft}^{2}=4.88 \mathrm{~kg} / \mathrm{m}^{2}$ and heat of combustion $=18.6 \mathrm{MJ} / \mathrm{kg}$
** Includes floors, walls, ceilings, doors, windows, baseboards, trim, mouldings, etc.
Note: Average fire load after adjustment for combustibles stored in incombustible containers was $4 \mathrm{lb} / \mathrm{ft}^{2}\left(360 \mathrm{MJ} / \mathrm{m}^{2}\right)$

Based on a survey of a small number of buildings reported in BMS 149, mercantile occupancies such as stores, shops and salesrooms are expected to have average fire load densities of about 10 to $15 \mathrm{lb} / \mathrm{ft}^{2}$ (910 to $1400 \mathrm{MJ} / \mathrm{m}^{2}$, heat of combustion $18.6 \mathrm{MJ} / \mathrm{kg}$). For two large mercantile buildings, 50 to 60% of the floor area had combustible contents not over $10 \mathrm{lb} / \mathrm{ft}^{2}\left(910 \mathrm{MJ} / \mathrm{m}^{2}\right)$, from 30 to 35% had between 10 and $15 \mathrm{lb} / \mathrm{ft}^{2}\left(910\right.$ to $\left.1400 \mathrm{MJ} / \mathrm{m}^{2}\right)$,
10% had between 15 and $20 \mathrm{lb} / \mathrm{ft}^{2}\left(1400\right.$ and $1800 \mathrm{MJ} / \mathrm{m}^{2}$), and no more than 5% had more than $20 \mathrm{lb} / \mathrm{ft}^{2}\left(1800 \mathrm{MJ} / \mathrm{m}^{2}\right)$. The approximate average fire load density based on this data was $12 \mathrm{lb} / \mathrm{ft}^{2}\left(1100 \mathrm{MJ} / \mathrm{m}^{2}\right)$.

Both industrial and storage occupancies are subject to a wide variation in the quantity of combustibles they may contain. The following survey data for industrial occupancies was taken from BMS 149:

1. For two furniture factories, fire loads in the working areas ranged from 5 to $65 \mathrm{lb} / \mathrm{ft}^{2}(450$ to $5900 \mathrm{MJ} / \mathrm{m}^{2}$); some storage areas of less than 5% of the floor area had greater loads; less than 10% of the floor area had loads greater than $30 \mathrm{lb} / \mathrm{ft}^{2}\left(2700 \mathrm{MJ} / \mathrm{m}^{2}\right)$.
2. Fire loads for two mattress factories were only greater than $30 \mathrm{lb} / \mathrm{ft}^{2}\left(2700 \mathrm{MJ} / \mathrm{m}^{2}\right)$ in a few areas; over half the total area had fire loads less than $10 \mathrm{lb} / \mathrm{ft}^{2}\left(910 \mathrm{MJ} / \mathrm{m}^{2}\right)$.
3. In two clothing factories, 90% of the measured areas had fire loads less than $15 \mathrm{lb} / \mathrm{ft}^{2}$ $\left(1400 \mathrm{MJ} / \mathrm{m}^{2}\right)$; loads were greater than $30 \mathrm{lb} / \mathrm{ft}^{2}\left(2700 \mathrm{MJ} / \mathrm{m}^{2}\right)$ in a few storage areas.
4. In a newspaper plant 85% of the area had fire loads less than $40 \mathrm{lb} / \mathrm{ft}^{2}\left(3600 \mathrm{MJ} / \mathrm{m}^{2}\right)$, and in a general printing plant only storage areas (35% of total area) had loads exceeding 40 $\mathrm{lb} / \mathrm{ft}^{2}$.

BMS 149 reported the following fire loads for five storage occupancies:
\(\left.$$
\begin{array}{|l|c|c|}\hline \text { Warehouse use } & \text { Stories } & \begin{array}{c}\text { Average fire load density } \\
\left(\mathrm{MJ} / \mathrm{m}^{2}\right)^{*}\end{array}
$$

\hline \& \&

\left.Paper in rolls for printing plant \mathrm{ft}^{2}\right)\end{array}\right]\)| |
| :--- |
| General service |

* conversion based on $1 \mathrm{lb} / \mathrm{ft}^{2}=4.88 \mathrm{~kg} / \mathrm{m}^{2}$ and heat of combustion $=18.6 \mathrm{MJ} / \mathrm{kg}$

Occupancies that are classified as hazardous are buildings that store, process, or handle combustible, flammable or explosive solids, liquids or gases. Hazardous occupancies have dangers related to factors other than the fire load itself that may present a serious threat to life and property.

The general ranges of fire loads for various occupancies are:

Occupancy	($\mathrm{lb} / \mathrm{ft}^{2}$)	Fire load density $\left(\mathrm{kg} / \mathrm{m}^{2}\right)^{*}$	(MJ / m $\left.{ }^{2}\right)^{*}$
Residential	5 to 10	25 to 50	450 to 910
Educational	5 to 10	25 to 50	450 to 910
Institutional	5 to 10	25 to 50	450 to 910
Assembly	5 to 10	25 to 50	450 to 910
Business	5 to 10	25 to 50	450 to 910
Mercantile	10 to 15	50 to 75	910 to 1400
Industrial **	variable	variable	variable
Storage **	variable	variable	variable
Hazardous **	variable	variable	variable

* soft conversion based on $1 \mathrm{lb} / \mathrm{ft}^{2}=4.88 \mathrm{~kg} / \mathrm{m}^{2}$ and heat of combustion $=18.6 \mathrm{MJ} / \mathrm{kg}$
${ }^{* *}$ fire severity will depend on the specific occupancy

C3 CULVER $(1976,1978)$ - U.S. OFFICE BUILDINGS

Fire load data was obtained using an inventory technique from a survey of 23 office buildings located in various regions throughout the United States. Fire load was not reduced to account for combustibles that do not burn completely because they are in steel enclosures. An equivalent weight of combustibles ($\mathrm{lb} / \mathrm{ft}^{2}$) was estimated for a wood with a heat of combustion of $8000 \mathrm{Btu} / \mathrm{lb}(18.6 \mathrm{MJ} / \mathrm{kg})$. The following tables present these values along with the conversion to $\mathrm{MJ} / \mathrm{m}^{2}$.

Government Buildings								
Room use	Fire load density$\left(\mathrm{lb} / \mathrm{ft}^{2}\right)$				Fire load density ($\mathrm{MJ} / \mathrm{m}^{2}$)*			
	Total		Interior finish		Total		Interior finish	
	Average	Standard deviation						
General	7.3	4.4	1.2	0.4	660	400	110	40
Clerical	5.8	5.2	1.2	0.5	530	470	110	50
Lobby	2.6	1.4	1.3	0.4	240	130	120	40
Conference	4.2	6.1	1.2	0.4	380	550	110	40
File	17.9	11.9	1.2	0.6	1620	1080	110	50
Storage	11.7	19.2	1.2	0.5	1060	1740	110	50
Library	30.2	7.8	1.0	0.1	2740	710	90	10
All rooms	7.3	7.3	1.2	0.4	660	660	110	40

* conversion based on $1 \mathrm{lb} / \mathrm{ft}^{2}=4.88 \mathrm{~kg} / \mathrm{m}^{2}$ and heat of combustion $=18.6 \mathrm{MJ} / \mathrm{kg}$

Private Buildings								
Room use	$\begin{gathered} \text { Fire load density } \\ \left(\mathrm{lb} / \mathrm{ft}^{2}\right) \\ \hline \end{gathered}$				Fire load density (MJ / m$\left.{ }^{2}\right)^{*}$			
	Total		Interior finish		Total		Interior finish	
	Average	Standard deviation						
General	7.7	4.3	1.9	0.4	700	390	170	40
Clerical	6.8	4.0	1.7	0.5	620	360	150	50
Lobby	5.0	4.2	1.7	0.6	450	380	150	50
Conference	5.9	4.6	1.8	0.4	540	420	160	40
File	16.2	12.9	1.8	0.6	1470	1170	160	50
Storage	13.2	11.7	1.7	0.9	1200	1060	150	80
Library	23.6	10.8	1.8	0.4	2140	980	160	40
All rooms	8.2	6.4	1.8	0.5	740	580	160	50

* conversion based on $1 \mathrm{lb} / \mathrm{ft}^{2}=4.88 \mathrm{~kg} / \mathrm{m}^{2}$ and heat of combustion $=18.6 \mathrm{MJ} / \mathrm{kg}$

C4 ISSEN (1978) - SOUTH AFRICAN RESIDENTIAL

Issen (1978) reported a survey of contents (movable) fire load carried out by Williams and Dannenfeldt in South Africa as part of a project to develop criteria for the fire resistance required for fire barriers in residential occupancies. All furnishing items were weighed in six houses and two flats (apartments), and the fire load densities estimated.

Unit no.	Fire load density ($\mathrm{kg} / \mathrm{m}^{2}$)									
	Bedrooms				Lounge		Dining room	Entranc e hall passage	Study / sewing room	Kitchen
Houses										
A	21.4	14.1	-	-	11.2	-	-	9.2	-	8.7
B	20.4	12.1	19.0	21.4	8.7	-	10.2	*	17.5	10.7
C	21.4	18.0	20.4	28.2	9.7	18.5	21.4	*	-	5.3
D	21.4	29.6	32.6	-	11.7	-	11.7	*	23.8	18.9
E	12.6	9.7	14.6	-	6.8	-	14.1	*	-	5.8
F	29.6	22.8	24.3	-	6.3	-	39.8	15.6	-	13.6
Flats										
A	16.5	11.7	-	-	-	-	6.8 **	14.6	-	15.6
B	24.3	31.6	-	-	-	-	12.6 **	-	-	38.8
Unit no.	Fire load density $\left(\mathrm{MJ} / \mathrm{m}^{2}\right)^{* * *}$									
	Bedrooms				Lounge		Dining room	Entranc e hall passage	Study / sewing room	Kitchen
	1	2	3	4	1	2				
Houses										
A	400	260	-	-	210	-	-	170	-	160
B	380	230	350	400	160	-	190	*	330	200
C	400	330	380	520	180	340	400	*	-	100
D	400	550	610	-	220	-	220	*	440	350
E	230	180	270	-	130	-	260	*	-	110
F	550	420	450	-	120	-	740	290	-	250
Flats										
A	310	220	-	-	-	-	130 **	270	-	290
B	450	590	-	-	-	-	230 **	-	-	720

* negligible
** room actually described as "lounge / dining room"
*** conversion based on heat of combustion $=18.6 \mathrm{MJ} / \mathrm{kg}$

C5 ISSEN (1980) - U.S. SINGLE-FAMILY RESIDENTIAL

Fire loads were surveyed using an inventory technique for 359 residences, consisting of 61 single family attached, 200 single family detached, and 98 mobile homes in the metropolitan Washington DC area. The average movable contents fire load density and average total fire load density are:

Type of residence	Average fire load density $\left(\mathrm{lb} / \mathrm{ft}^{2}\right)$		Average fire load density $\left(\mathrm{MJ} / \mathrm{m}^{2}\right)^{*}$	
	Movable contents	Total	Movable contents	Total
	6.7			
Mobile home	6.8	12.1	610	1100

* conversion based on $1 \mathrm{lb} / \mathrm{ft}^{2}=4.88 \mathrm{~kg} / \mathrm{m}^{2}$ and heat of combustion $=18.6 \mathrm{MJ} / \mathrm{kg}$

The higher total fire load for mobile homes is due to the more extensive use of plywood in the interior wall finish.

The fire loads by room type (where "other rooms" indicates rooms that had mixed functions or were being renovated or remodelled so that their main function was not apparent) are:

Single family attached								
Room type	Fire load density (lb/ft${ }^{2}$)				Fire load density ($\mathrm{MJ} / \mathrm{m}^{2}$)*			
	Movable contents		Total		Movable contents		Total	
	Average	Standard deviation						
Hall	1.4	3.5	6.9	7.7	130	320	630	700
Bathroom	3.0	5.6	9.0	8.8	270	510	820	800
Kitchen	7.0	5.4	11.3	6.4	640	490	1030	580
Dining room	4.9	3.4	10.1	4.8	440	310	920	440
Living room	6.3	4.1	10.8	5.2	570	370	980	470
Family room	10.2	11.0	16.5	11.7	930	1000	1500	1060
Study	15.3	14.9	21.2	15.5	1390	1350	1920	1410
Bedroom	7.3	8.2	12.8	10.3	660	740	1160	930
Basement	5.1	7.2	9.8	7.4	460	650	890	670
Utility room	8.0	11.4	12.0	12.1	730	1030	1090	1100
Store room	16.8	30.3	23.3	30.3	1520	2750	2110	2750
Other rooms	15.6	19.7	25.7	15.5	1420	1790	2330	1410

* conversion based on $1 \mathrm{lb} / \mathrm{ft}^{2}=4.88 \mathrm{~kg} / \mathrm{m}^{2}$ and heat of combustion $=18.6 \mathrm{MJ} / \mathrm{kg}$

Single family detached								
Room type	Fire load density$\left(\mathrm{lb} / \mathrm{ft}^{2}\right)$				Fire load density ($\left.\mathrm{MJ} / \mathrm{m}^{2}\right)^{*}$			
	Movable contents		Total		Movable contents		Total	
	Average	Standard deviation						
Hall	1.3	3.7	6.0	5.6	120	340	540	510
Bathroom	2.5	4.3	8.6	7.0	230	390	780	640
Kitchen	6.9	4.7	10.5	5.2	630	430	950	470
Dining room	4.9	4.3	9.9	5.5	440	390	900	500
Living room	6.1	5.2	11.0	6.4	550	470	1000	580
Family room	6.3	5.4	13.2	7.8	570	490	1200	710
Study	17.8	14.7	24.2	15.7	1620	1330	2200	1430
Bedroom	7.2	5.5	12.2	6.7	650	500	1110	610
Basement	12.5	59.4	17.0	60.3	1130	5390	1540	5470
Utility room	5.9	10.1	11.1	11.4	540	920	1010	1030
Store room	15.6	31.6	22.6	33.0	1420	2870	2050	3000
Other rooms	3.6	4.5	10.7	6.0	330	410	970	540

* conversion based on $1 \mathrm{lb} / \mathrm{ft}^{2}=4.88 \mathrm{~kg} / \mathrm{m}^{2}$ and heat of combustion $=18.6 \mathrm{MJ} / \mathrm{kg}$

Mobile homes								
Room type	Fire load density ($\mathrm{lb} / \mathrm{ft}^{2}$)				Fire load density ($\left.\mathrm{MJ} / \mathrm{m}^{2}\right)^{*}$			
	Movable contents		Total		Movable contents		Total	
	Average	Standard deviation						
Hall	1.2	5.8	14.9	9.1	110	530	1350	830
Bathroom	4.5	3.5	20.6	7.3	410	320	1870	660
Kitchen	7.8	3.3	18.1	5.3	710	300	1640	480
Dining room	6.0	6.7	18.1	8.2	540	610	1640	740
Living room	5.1	2.8	15.6	6.6	460	250	1420	600
Family room	5.9	4.6	16.6	5.0	540	420	1510	450
Study	9.5	6.2	23.4	5.8	860	560	2120	530
Bedroom	5.7	3.1	18.3	5.1	520	280	1660	460
Utility room	4.3	5.2	20.1	6.0	390	470	1820	540
Store room	20.1	18.1	38.5	24.6	1820	1640	3490	2230

* conversion based on $1 \mathrm{lb} / \mathrm{ft}^{2}=4.88 \mathrm{~kg} / \mathrm{m}^{2}$ and heat of combustion $=18.6 \mathrm{MJ} / \mathrm{kg}$

C6 CAMPBELL (1986) - U.S. DATA

Campbell (1986) summarises some U.S. fire load data including that of Culver $(1976,1978)$. The following table presents some of the data as $\mathrm{lb} / \mathrm{ft}^{2}$ of wood equivalent along with the conversion to $\mathrm{MJ} / \mathrm{m}^{2}$.

Type of room	Contents fire load density $\left(\mathrm{lb} / \mathrm{ft}^{2}\right)$		Contents fire load density $\left(\mathrm{MJ} / \mathrm{m}^{2}\right)^{*}$	
	Average	Standard deviation	Average	Standard deviation
Family room	3.9	1.13	350	103
Bedroom	2.7	0.65	250	59
Dining room	4.3	1.15	390	104
Kitchen	3.6	1.02	330	93
Hospital patient room	3.2	0.77	290	70
Nursing home patient room	1.2	0.36	110	33
	2.6	0.62	240	56

* conversion based on $1 \mathrm{lb} / \mathrm{ft}^{2}=4.88 \mathrm{~kg} / \mathrm{m}^{2}$ and heat of combustion $=18.6 \mathrm{MJ} / \mathrm{kg}$

C7 CIB DESIGN GUIDE (1986)

C1 DATA SOURCES

The following tables of fire loads are taken from CIB W14 (1986) which summarised data from these references:

1) National Swedish Building Research Summaries R 34 : 1970 Nilsson, L., 1970, "Brandbelastning/Bostadslagenheter/Fire Loads in Flats", Statens Institut For Byggnadsforskning; Stockholm, Rapport R 34: 1970, Svensk Byggtjanst, Box 1403, S11184 Stockholm.
2) Pettersson, O., Magnusson, S.E., and Thor, J., "Fire Engineering Design of Steel Structures", Publ. 50, Swedish Institute of Steel Construction, Stockholm 1976, (Swedish Edition 1974).
3) European Recommendations for the Fire Safety of Steel Structures; Ch. 2, Fire Exposure, "Fire Safety of Steel Structures", Technical Committee 3, European Convention for Constructional Steelwork, Avenue Louis 326, Bte 52, B-1050 Brussels, July 1981.
4) Bryl, S., "Brandbelastung in Hochbau", Schweizerische Bauzeitung, 24 April 1975; special reprint from: 93, Jahrgang, Heft 17.
5) Bryl, S., "Brandbelastung in Stahlbau", Teil III, Brandbelastung in Burogebauden, ECCS-III-74-2-D, , European Convention for Constructional Steelwork, Rotterdam 1974.
6) Bonetti, M., Kree, P., and Kruppa, J., "Estimation des Charges Mobilieres d'Incendie dans les Immeubles a Usage de Bureaux", Construction Metallique, No.3, Centre Technique Industriel de la Construction Metallique (C.T.I.C.M.), 20, Rue Jean Jaures, F-92807 Puteaux, September 1975.
7) Combessis, J.C., Fauconnier, R., and Cluzel, D., "Enquetes et Charges d'Incendie; Etablissements Recevant du Public, Charges Incendie Courbes, Temperature/Temps Correspondantes, Commande D.S.C. No. 005110", Institut Technique du Batiment et des Travaux Publics, 9 Rue la Perouse, F-75784 Paris Cedex 16, September 1983.
8) Beilage 2 der SIA-Dokumentation 81/1984, Brandrisikobewertung / Berechnungsvertahren SIA, Schweizerischer Ingenieur- und Architektenverein, Postfach, CH-8039 Zurich.
9) Campbell, J.A., "Confinement of Fire in Buildings", Fire Protection Handbook, 1981, National Fire Protection Association, Quincy, MA, Section 5.9.
10) Culver, C.G., "Survey Results for Fire Loads and Live Loads in Office Buildings", NBS Building Science Series 85, US Department of Commerce / National Bureau of Standards, May 1976.
11) Robertson, A.F., and Gross, D., "Fire Load, Fire Severity and Fire Endurance", Special Technical Publication 464, American Society for Testing and Materials, Philadelphia, PA,, 1970.
12) Gross, D., "Measurements of Fire Loads and Calculations of Fire Severity", Wood and Fiber, 9 (1), Special Fire Symposium Issue, Part I, spring 1977, Center for Fire Research, National Engineering Laboratory, National Bureau of Standards, Washington, DC.
13) Hass, R., "Statistical Investigations on Fire Load, System Geometry and Ventilation in Modern School Buildings", Res. Report No. BI7-810705-216 for the Bundesminister Fur Raumordnung, Bauwesen und Stadtebau, Technische Universitat Braunschweig, Institut fur Massivbau, Baustoffe und Brandschutz, 1981.
14) Schneider, U. and Max, U., "Brandlasterhebungen in Industrie Stahlhallen"; unpublished report, 1984.

In the following sections, q_{f} is the fire load per unit floor area, and q_{t} is the fire load per unit area of the surface bounding the fire compartment.

C2 DWELLINGS

Variable fire load densities in dwellings - fire load density q_{f} per unit floor area.

	$\begin{gathered} \hline \text { Single } \\ \text { value } \\ \left(\mathrm{MJ} / \mathrm{m}^{2}\right) \\ \hline \end{gathered}$	Average$\left(\mathrm{MJ} / \mathrm{m}^{2}\right)$	Standard deviation ($\mathrm{MJ} / \mathrm{m}^{2}$)	Fractile ($\mathrm{MJ} / \mathrm{m}^{2}$)			Remarks
				80\%	90\%	95\%	
Swedish data [1,2,3] ${ }^{\text {t }}$							$q_{f}=q_{t} \times 5.2$
3 rooms		720	104	770			Characteristic value 80\%
2 rooms		780	128	870			bedroom
							630
							living room
							510
European data [4]							
6 rooms		500	180				$\mathrm{q}_{\mathrm{f}}=\mathrm{q}_{\mathrm{t}} \times 5.2$
5 rooms		540	125				$5.2=$ cubic measure
3 rooms		670	133	760	780	830	$3.2 \times 4.3 \times 2.9$
2 rooms		780	129	870	1020	950	
1 room		720	104	760	780	890	
Swiss risk evaluation [8]							
Flat		330					
USA data [9]							
Living room		350	104				
Family room		250	58				
Bedroom		390	104				
Dining room		330	92				
Kitchen		290	71				
All rooms		320	88				
USA data [11,12]							
Residence		750*					*total fire load including
Max. for linen closet		4440*					permanent fire load
Range of max. values for single occupied rooms		$\begin{gathered} 730- \\ \text { 1270* } \end{gathered}$					

§ see list of references above

C3 HOSPITALS

Variable fire load densities in hospitals - fire load density q_{f} per unit floor area.

§ see list of references above

C4 HOTELS

Variable fire load densities in hotels - fire load density q_{f} per unit floor area.

	Single value $\left(\mathrm{MJ} / \mathrm{m}^{2}\right)$	Average	Standard deviation $\left(\mathrm{MJ} / \mathrm{m}^{2}\right)$	Fractile $\left(\mathrm{MJ} / \mathrm{m}^{2}\right)$		Remarks
				80%	90%	95%

¡ see list of references above

C5 OFFICES

Variable fire load densities in offices - fire load density q_{f} per unit floor area

¡ see list of references above

	Single value ($\mathrm{MJ} / \mathrm{m}^{2}$)	Average $\left(\mathrm{MJ} / \mathrm{m}^{2}\right)$	Standard deviation $\left(\mathrm{MJ} / \mathrm{m}^{2}\right)$	Fractile ($\mathrm{MJ} / \mathrm{m}^{2}$)			Remarks				
				80\%	90\%	95\%					
USA data Government buildings $[9,10]^{\text {th }}$											
General		555	$365^{\text {a) ** }}$								
Clerical		415	425 **								
Lobby		115	92 **								
Conference		270	515 **								
File		$1515{ }^{\text {b) }}$	1025 **								
Storage		950	1700 **								
Library		2650	695 **								
All rooms		555	625 **								
USA data - Private buildings $[9,10]$											
General		525	355 **								
Clerical		465	315 **								
Lobby		300	325 **								
Conference		370	380 **								
File		1300	1110 **								
Storage		1040	980 **								
Library		1980	940 **								
All rooms		580	535 **								
USA data [11,12]											
Offices		1670*					*total fire load including				
excl. heavy files		960*					permanent fire loads				
Max. for heavy files		7800*									
Range of maximum values for single occupied room		$\begin{gathered} 635- \\ 3900^{*} \end{gathered}$									

ॐ see list of references above (for this table the references in CIB W14(1986) were apparently incorrect)
a) corrected from 285 using data from [10]
b) corrected from 1420 using data from [10]
** based on difference between values for total fire load and interior finish fire load from ref. 10

C6 SHOPPING CENTRES AND DEPARTMENT STORES

Variable fire load densities in shopping centres and department stores - fire load density q_{f} per unit floor area.

	Single value ($\mathrm{MJ} / \mathrm{m}^{2}$)	Average $\left(\mathrm{MJ} / \mathrm{m}^{2}\right)$	Standard deviation ($\mathrm{MJ} / \mathrm{m}^{2}$)	Fractile ($\mathrm{MJ} / \mathrm{m}^{2}$)			Remarks
				80\%	90\%	95\%	
European data [4] ${ }^{\text {f }}$							
Shopping centre (floor area $3000 \mathrm{~m}^{2}$)			Local pea	values			Explanation of very low values:
Articles of daily use		420					Sales area $=20-25 \%$ of
Foods		585					the total floor area.
Textiles		380	535				
Perfumery, toys, stationery store, household items		420	560				
Furniture, carpet		585	960				
European data [7]							
Furniture store	970						Permanent fire load $=200$
Little supermarket	750						
Swiss risk evaluation							
[8]							
Food store		665					
Clothing store		585					
Perfumery		420					
Stationery store		665					
Furniture store		420					
Toy store		500					
Carpet store		835					
Department store		420					
USA data [11,12]							
Mercantile							
(department store)		935*					
Max. for paint dept.		4260*					*total fire load including
Warehouse							permanent fire loads
- General		2270*					
- Printing		15800*					
- Max. value		23200*					

¡ see list of references above

C7 INDUSTRIAL BUILDINGS

Variable fire load densities in industrial buildings - fire load density q_{f} per unit floor area.

¡ see list of references above

C8 SCHOOLS

Variable fire load densities in schools - fire load density q_{f} per unit floor area.

	Single value	Average	Standard deviation		$\begin{aligned} & \text { Fractile } \\ & \mathrm{MJ} / \mathrm{m}^{2} \end{aligned}$		Remarks
	($\mathrm{MJ} / \mathrm{m}^{2}$)	($\mathrm{MJ} / \mathrm{m}^{2}$)	($\mathrm{MJ} / \mathrm{m}^{2}$)	80\%	90\%	95\%	
Swedish data [2,3] ${ }^{\text {t }}$							$q_{f}=q_{t} \times 3.53$
Junior level		295	50	345			
Middle level		340	71	415			
Senior level		215	67	250			
All schools		285	83	340			
European data [4]							
Junior level		295	58	340	395	400	
Middle level		340	58	425	445	450	
Senior level		220	67	275	300	450	
All schools		285	79	360	415	440	
Classrooms		245					
Cardboard room		235					
Collection room		435					
Corridors		63					
Average		240					
The Netherlands							
All schools		215		365		550	
Swiss risk evaluation[8]							
Schools		250					
USA data [11,12]							
School		1420*					*total fire load (variable
Max. for textbook storeroom		20670*					and interior finish)
Range of max. values for single occupied room		$\begin{gathered} 635- \\ 3540^{*} \end{gathered}$					

§ see list of references above

Fire loads in the individual groups of school rooms, from ref. 13 - fire load density q_{f} per unit floor area.

	$\begin{array}{c}\text { Permanent fire load } \\ \left(\mathrm{MJ} / \mathrm{m}^{2}\right)\end{array}$		$\begin{array}{c}\text { Variable fire load } \\ \left(\mathrm{MJ} / \mathrm{m}^{2}\right)\end{array}$		$\begin{array}{c}\text { Total fire load } \\ \left(\mathrm{MJ} / \mathrm{m}^{2}\right)\end{array}$	
	Mean	90% fractile		Mean	90% fractile	Mean
90% fractile						

C8 SWEDISH DATA [1,2,3] ${ }^{\dagger}$

Fire load density q_{t} per unit area of the surface bounding the fire compartment.

Type of fire compartment	Average	Standard deviation		Characteristic value
	$\left(\mathrm{MJ} / \mathrm{m}^{2}\right)$	1	(MJ / m ${ }^{2}$)	(MJ m${ }^{2}$)
Dwellings*				
two rooms and kitchen	150		24.7	168
three rooms and kitchen	139		20.1	149
Offices**				
technical offices	124		31.4	145
administrative offices	102		32.2	132
all offices investigated	114		39.4	138
Schools**				
junior level	84.2		14.2	98.4
middle level	96.7		20.5	117
senior level	61.1		18.4	71.2
all schools investigated	80.4		23.4	$96.3{ }^{\text {a) }}$
Hospitals	116		36.0	147
Hotels**	67		19.3	81.6

* floor covering excluded
¡ see list of references above
** only variable fire loads included
a) corrected from 76.3

C9 AVERAGE FIRE LOAD DENSITIES - SWISS DATA

The following fire load densities (only variable fire load densities) are taken from Beilage 1: Brandschutztechnische Merkmale verscheidener Nutzungen und Lagerguter (ref. 8 above) and are defined as density per unit floor area $\left(\mathrm{MJ} / \mathrm{m}^{2}\right)$.

Note that for the determination of the variable fire load of storage areas, the values given in the following table have to be multiplied by the height of storage in metres. Areas and aisles for transportation have been taken into consideration in an averaging manner.

The values are based on a large investigation carried out during the years 1967 to 1969 by a staff of 10 to 20 students under the guidance of the Swiss Fire Prevention Association for Industry and Trade with the financial support of the government civil defence organisation.

For each type of occupancy, storage and/or building, a minimum number of 10 to 15 samples were analysed: normally 20 or more samples are available. All values given in the following pages are average values. Unfortunately, it has been impossible to obtain the basic data sheets of this investigation. In order to estimate the corresponding standard deviations and the 80% 90% and 95% fractile values, the data from this source were compared with data given in various sources. This comparison results in the following suggestions:
(a) For well-defined occupancies which are rather similar or with very limited differences in furniture and stored goods, eg dwellings, hotels, hospitals, offices and schools, the following estimates may suffice:

Coefficient of variation	$=$	$30 \%-50 \%$ of the given average value
90% fractile value	$=$	$(1.35-1.65) \mathrm{x}$ average value
80% fractile value	$=$	$(1.25-1.5) \mathrm{x}$ average value
Isolated peak values	$=$	$2 \times$ average value

(b) For occupancies that are rather dissimilar or with larger differences in furnishings and stored goods, eg shopping centres, department stores and industrial occupancies, the following estimates are tentatively suggested:

$$
\begin{array}{llc}
\text { Coefficient of variation } & = & 50 \%-80 \% \text { of given average value } \\
90 \% \text { fractile value } & = & (1.65-2.0) \times \text { average value } \\
80 \% \text { fractile value } & = & (1.45-1.75) \times \text { average value } \\
\text { Isolated peak values } & = & 2.5 \times \text { average value }
\end{array}
$$

Type of occupancies	Fabrication ($\mathrm{MJ} / \mathrm{m}^{2}$)	Storage ($\mathrm{MJ} / \mathrm{m}^{2} / \mathrm{m}$)	Type of occupancies	Fabrication ($\mathrm{MJ} / \mathrm{m}^{2}$)	Storage ($\mathrm{MJ} / \mathrm{m}^{2} / \mathrm{m}$)
Academy	300		Boat mfg.	600	
Accumulator forwarding	800		Boiler house	200	
Accumulator mfg.	400	800	Bookbinding	1000	
Acetylene cylinder storage	700		Bookstore	1000	
Acid plant	80		Box mfg.	1000	600
Adhesive mfg.	1000	3400	Brick plant, burning	40	
Administration	800		Brick plant. clay preparation	40	
Adsorbent plant for combustible vapours	>1700		Brick plant, drying kiln with wooden grates	1000	
Aircraft hangar	200		Brick plant, drying room with		
Airplane factory	200		metal grates	40	
Aluminium mfg.	40		Brick plant, drying room with		
Aluminium processing	200		wooden grates	400	
Ammunition mfg.	special		Brick plant, pressing	200	
Animal food preparing, mfg.	2000	3300	Briquette factories	1600	
Antique shop	700		Broom mfg.	700	400
Apparatus forwarding	700		Brush mfg.	700	800
Apparatus mfg.	400		Butter mfg.	700	4000
Apparatus repair	600				
Apparatus testing	200		Cabinet making (without		
Arms mfg.	300		woodyard)	600	
Arms sales	300		Cable mfg.	300	600
Artificial flower mfg.	300	200	Café	400	
Artificial leather mfg.	1000	1700	Camera mfg.	300	
Artificial leather processing	300		Candle mfg.	1300	22400
Artificial silk mfg.	300	1100	Candy mfg.	400	1500
Artificial silk processing	210		Candy packing	800	
Artificial stone mfg.	40		Candy shop	400	
Asylum	400		Cane products mfg.	400	200
Authority office	800		Canteen	300	
Awning mfg.	300	1000	Car accessory sales	300	
			Car assembly plant	300	
Bag mfg. (jute, paper, plastic)	500		Car body repairing	150	
Bakery	200		Car paint shop	500	
Bakery, sales	300		Car repair shop	300	
Ball bearing mfg.	200		Car seat cover shop	700	
Bandage mfg.	400		Cardboard box mfg.	800	2500
Bank, counters	300		Cardboard mfg.	300	4200
Bank offices	800		Cardboard products mfg.	800	2500
Barrel mfg., wood	1000	800	Carpenter shed	700	
Basement, dwellings	900		Carpet dyeing	500	
Basketware mfg.	300	200	Carpet mfg.	600	1700
Bed sheeting production	500	1000	Carpet store	800	
Bedding plant	600		Cartwright's shop	500	
Bedding shop	500		Cast iron foundry	400	800
Beer mfg. (brewery)	80		Celluloid mfg.	800	3400
Beverage mfg., non-alcoholic	80		Cement mfg.	1000	
Bicycle assembly	200	400	Cement plant	40	
Biscuit factories	200		Cement products mfg.	80	
Biscuit mfg.	200		Cheese factory	120	
Bitumen preparation	800	3400	Cheese mfg. (in boxes)	170	
Blind mfg., venetian	800	300	Cheese store	100	
Blueprinting firm	400		Chemical plants (rough		
Boarding school	300		average)	300	1000

Type of occupancies	Fabrication ($\mathrm{MJ} / \mathrm{m}^{2}$)	$\begin{aligned} & \text { Storage } \\ & \left(\mathrm{MJ} / \mathrm{m}^{2} / \mathrm{m}\right) \end{aligned}$	Type of occupancies	Fabrication ($\mathrm{MJ} / \mathrm{m}^{2}$)	$\begin{aligned} & \text { Storage } \\ & \left(\mathrm{MJ} / \mathrm{m}^{2} / \mathrm{m}\right) \end{aligned}$
Chemist's shop	1000		Distilling plant, combustible		
Children's home	400		materials	200	
China mfg.	200		Distilling plant,		
Chipboard finishing	800		incombustible materials	50	
Chipboard pressing	100		Doctor's office	200	
Chocolate factory,			Door mfg., wood	800	1800
intermediate storage	6000		Dressing, textiles	200	
Chocolate factory, packing	500		Dressing, paper	700	
Chocolate factory, tumbling			Dressmaking shop	300	
treatment	1000		Dry-cell battery	400	600
Chocolate factory, all other			Dry cleaning	300	
specialities	500		Dyeing plant	500	
Church	200				
Cider mfg. (without crate			Edible fat forwarding	900	
storage)	200		Edible fat mfg.	1000	18900
Cigarette plant	300		Electric appliance mfg.	400	
Cinema	300		Electric appliance repair	500	
Clay, preparing	50		Electric motor mfg.	300	
Cloakroom, metal wardrobe	80		Electrical repair shop	600	
Cloakroom, wooden wardrobe	400		Electrical supply storage		
Cloth mfg.	400		$\mathrm{H}<3 \mathrm{~m}$	1200	
Clothing plant	500		Electro industry	600	
Clothing store	600		Electronic device mfg.	400	
Coal bunker	2500		Electronic device repair	500	
Coal cellar		10500	Embroidery	300	
Cocoa processing	800		Etching plant glass/metal	200	
Coffee-extract mfg.	300		Exhibition hall, cars		
Coffee roasting	400		including decoration	200	
Cold storage	2000		Exhibition hall, furniture		
Composing room	400		including decoration	500	
Concrete products mfg.	100		Exhibition hall, machines		
Condiment mfg.	50		including decoration	80	
Congress hall	600		Exhibition of paintings		
Contractors		500	including decoration	200	
Cooking stove mfg.	600		Explosive industry	4000	
Coopering	600				
Cordage plant	300	600	Fertiliser mfg.	200	200
Cordage store	500		Filling plant/barrels		
Cork products mfg.	500	800	liquid filled and/or barrels		
Cosmetic mfg.	300	500	incombustible	<200	
Cotton mills	1200		liquid filled and/or barrels		
Cotton wool mfg.	300		combustible:		
Cover mfg.	500		Risk Class I - IV	>3400	
Cutlery mfg. (household)	200		Risk Class V (if higher,	>1700	
Cutting-up shop, leather, artificial leather	300		consider combustibility of barrels)		
Cutting-up shop, textiles	500		Filling plant/small casks:		
Cutting-up shop, wood	700		liquid filled and casks		
			incombustible	<200	
Dairy	200		liquid filled and/or casks		
Data processing	400		combustible:		
Decoration studio	1200	2000	Risk Class I - IV	<500	
Dental surgeon's laboratory	300		Risk Class V (if higher,	<500	
Dentist's office	200		consider combustibility		
Department store	400		of casks)		

Type of occupancies	Fabrication ($\mathrm{MJ} / \mathrm{m}^{2}$)	$\begin{gathered} \text { Storage } \\ \left(\mathrm{MJ} / \mathrm{m}^{2} / \mathrm{m}\right) \\ \hline \end{gathered}$	Type of occupancies	Fabrication ($\mathrm{MJ} / \mathrm{m}^{2}$)	$\begin{gathered} \text { Storage } \\ \left(\mathrm{MJ} / \mathrm{m}^{2} / \mathrm{m}\right) \\ \hline \end{gathered}$
Finishing plant, paper	500		Hardening plant	400	
Finishing plant, textile	300		Hardware mfg.	200	
Fireworks mfg.	special	2000	Hardware store	300	
Flat	300		Hat mfg.	500	
Floor covering mfg.	500	6000	Hat store	500	
Floor covering store	1000		Heating equipment room,		
Flooring plaster mfg.	600		wood or coal firing	300	
Flour products	800		Heat sealing of plastics	800	
Flower sales	80		High-rise office building	800	
Fluorescent tube mfg.	300		Homes	500	
Foamed plastics fabrication	3000	2500	Homes for aged	400	
Foamed plastics processing	600	800	Hosiery mfg.	300	1000
Food forwarding	1000		Hospital	300	
Food store	700		Hotel	300	
Forge	80		Household appliances, mfg.	300	200
Forwarding, appliances partly made of plastic	700		Household appliances, sales	300	
Forwarding, beverage	300				
Forwarding, cardboard goods	600		Ice cream plant (including		
Forwarding, food	1000		packaging)	100	
Forwarding, furniture	600		Incandescent lamp plant	40	
Forwarding, glassware	700		Injection moulded parts mfg.		
Forwarding, plastic products	1000		(metal)	80	
Forwarding, printed matters	1700		Injection moulded parts		
Forwarding, textiles	600		mfg. (plastic)	500	
Forwarding, tinware	200		Institution building	500	
Forwarding, varnish, polish	1300		Ironing	500	
Forwarding, woodware (small)	600				
Foundry (metal)	40		Jewellery mfg.	200	
Fur, sewing	400		Jewellery shop	300	
Fur store	200		Joinery	700	
Furniture exhibition	500		Joiners (machine room)	500	
Furniture mfg. (wood)	600		Joiners workbench	700	
Furniture polishing	500		Jute, weaving	400	1300
Furniture store	400				
Furrier	500		Laboratory, bacteriological	200	
			Laboratory, chemical	500	
Galvanic station	200		Laboratory, electric,		
Gambling place	150		electronic	200	
Glass blowing plant	200		Laboratory, metallurgical	200	
Glass factory	100		Laboratory, physics	200	
Glass mfg.	100		Lacquer forwarding	1000	
Glass painting	300		Lacquer mfg.	500	2500
Glass processing	200		Large metal constructions	80	
Glassware mfg.	200		Lathe shop	600	
Glassware store	200		Laundry	200	
Glazier's workshop	700		Leather goods sales	700	
Gold plating (of metals)	800	3400	Leather product mfg.	500	
Goldsmith's workshop	200		Leather, tanning, dressing,		
Grain mill, without storage	400	13000	etc	400	
Gravestone carving	50		Library	2000	2000
Graphic workshop	1000		Lingerie mfg.	400	
Greengrocer's shop	200		Liqueur mfg.	400	800
			Liquor mfg.	500	800
Hairdressing shop	300		Liquor store	700	

Type of occupancies	Fabrication $\left(\mathrm{MJ} / \mathrm{m}^{2}\right)$	Storage $\left(\mathrm{MJ} / \mathrm{m}^{2} / \mathrm{m}\right)$	Type of occupancies	Fabrication $\left(\mathrm{MJ} / \mathrm{m}^{2}\right)$	Storage $\left(\mathrm{MJ} / \mathrm{m}^{2} / \mathrm{m}\right)$
Wine merchant's shop	200		Wood grinding	200	
Wire drawing	80		Wood pattern-making shop	600	
Wire factory	800		Wood preserving plant	3000	
Wood carving	700		Youth hostel		300
Wood drying plant	800				

C10 KOSE ET AL. (1986) - JAPANESE DWELLINGS

Kose et al. (1986) surveyed by an inventory technique the movable fire load in 214 dwellings in apartment houses in the metropolitan Tokyo area. The occupants completed survey forms listing the combustible contents of the dwelling from which the fire load was estimated. Movable fire load included furniture and containers, stored goods in them such as documents, books, magazines and clothes, as well as carpets, curtains and draperies. The average movable fire load density was $33.9 \mathrm{~kg} / \mathrm{m}^{2}$ with a standard deviation of $11.7 \mathrm{~kg} / \mathrm{m}^{2}$ (average $630 \mathrm{MJ} / \mathrm{m}^{2}$, standard deviation $220 \mathrm{MJ} / \mathrm{m}^{2}$) based on heat of combustion of $18.6 \mathrm{MJ} / \mathrm{kg}$.

C11 BUSH ET AL. (1991) - U.S. NON-RESIDENTIAL

Bush et al. (1991) estimated fire loads in U.S. urban areas based on previously published data. This was part of a study of the effects of fires generated by nuclear weapons (specifically in regard to "nuclear winter"). The estimated average total non-residential fire loads per unit floor area are:

Building type	Total fire load density		Building type	Total fire load density	
		($\left.\mathrm{MJ} / \mathrm{m}^{2}\right)^{*}$			($\left.\mathrm{MJ} / \mathrm{m}^{2}\right)^{*}$
	m^{2})			m^{2})	
INDUSTRIAL	50	930	WHOLESALE / WAREHOUSING	183	3400
Food processing plant	95	1770	Wholesale, warehouse (high) ${ }^{\text {a }}$	250	4650
Textile, leather mill	95	1770	Wholesale, warehouse (low) ${ }^{\text {a }}$	100	1860
Light assembly	60	1120	SERVICE	37	690
Heavy assembly	20	370	Office	60	1120
Paper, chemical, rubber, petroleum	75	1400	Medical hospital	10	190
Metal works, glass works	25	470	Medical clinic	20	370
Printing, publishing	155	2880	Lodging ${ }^{\text {b) }}$	40	740
Other industrial	50	930	Automobile service	20	370
Utility	25	470	Other service	50	930
Laboratory	30	560	Education	35	650
RETAIL	41	760	Assembly, entertainment (high)	20	370
Shopping centre	50	930	Assembly, entertainment (low)	10	190
Department store	40	740	OTHER	18	330
Food, drug store	35	650	Agricultural ${ }^{\text {c) }}$	25	470
Restaurant	25	470	Residential ${ }^{\text {d }}$	45	840
Building materials, hardware	65	1210	Other (low) ${ }^{\text {e }}$	15	280
Furniture, home furnishings	35	650	Vacant	5	90
Automobile dealer	20	370			
Other retail	50	930	U.S. Average	54	1000

* conversion based on heat of combustion $=18.6 \mathrm{MJ} / \mathrm{kg}$
a) high indicates densely packed and almost entirely combustible eg. retail products; low indicates non-burnable contents eg. cold-storage buildings or low density eg. combined showroom-warehouse buildings
b) includes hotels, motels, boarding houses
c) includes barns and silos
d) living areas in non-residential buildings
e) includes parking garages and airplane hangars

C12 BUTCHER (1991) - BRITISH RECOMMENDATIONS

Butcher (1991) lists the following approximate fire load densities which are appropriate to the "Purpose Groups" (ie. occupancies) in the 1965 British Building Regulations (see also Butcher and Parnell (1983)). There is no indication whether these values correspond to average values or upper values that are unlikely to be exceeded.

Purpose Group	Fire Load Density			
	(BTU / ft ${ }^{2}$)	$\left(\mathrm{lb} / \mathrm{ft}^{2}\right)^{*}$	$\left(\mathrm{kg} / \mathrm{m}^{2}\right)^{*}$	($\mathrm{MJ} / \mathrm{m}^{2}$)
Domestic	40000	5	25	465
Institutional	40000	5	25	465
Other residential	40000	5	25	465
Office	40000 to 80000	5 to 10	25 to 50	465 to 930
Shop	up to 400000	up to 50	up to 250	up to 4650
Factory	up to 240000	up to 30	up to 150	up to 2790
Assembly	40000 to 80000	5 to 10	25 to 50	465 to 930
Storage and general	up to 800000	up to 100	up to 500	up to 9300

* wood equivalent

C13 CIB (1993)

The following recommended values for average fire load intensity and coefficient of variation are presented in CIB (1993) and are based on Swedish data:

Type of fire compartment	Average fire load $\left(\mathrm{MJ} / \mathrm{m}^{2}\right)$	Coefficient of variation
Dwellings		
Two rooms and a kitchen	550	0.15
Three rooms and a kitchen	450	0.15
Offices	600	0.25
Technical offices	500	0.30
Administrative offices	350	0.15
Schools	400	0.20
Junior level	250	0.25
Middle level	450	0.30
Senior level	300	0.25
Hospitals		
Hotels		

Presumably, the tabulated values are movable fire load only. The report notes that the fire load may be modelled by a lognormal distribution.

C14 CHOW AND CHEUNG (1995-96) - HONG KONG FACTORIES

Chow and Cheung (1995-96) surveyed 47 factories in Hong Kong (generally high-rise). The limits of total fire load density for the cumulative frequencies of $50 \%, 80 \%$ and 90% were $855 \mathrm{MJ} / \mathrm{m}^{2}, 1671 \mathrm{MJ} / \mathrm{m}^{2}$ and $2424 \mathrm{MJ} / \mathrm{m}^{2}$.

Factory number	Floor area	Fire load density ($\mathrm{MJ} / \mathrm{m}^{2}$)		
	$\left(\mathrm{m}^{2}\right)$	Fixed	Movable	Total
1	100	950	2050	3000
2	100	950	493	1443
3	300	297	1339	1636
4	200	48	2925	2973
5	1000	48	870	917
6	100	114	519	633
7	100	950	218	1168
8	60	1583	200	1783
9	80	238	1135	1373
10	60	533	744	1277
11	40	2000	600	2600
12	400	50	1325	1375
13	90	211	408	619
14	800	37	1487	1524
15	200	190	464	654
16	500	100	250	350
17	400	100	110	210
18	100	950	3915	4865
19	600	172	23	195
20	2000	123	75	198
21	1000	150	145	295
22	40	250	140	390
23	50	320	417	737
24	200	400	418	818
25	300	317	1326	1643
26	100	570	390	960
27	100	950	795	1745
28	350	81	583	664
29	200	142	2093	2235
30	500	190	252	442
31	170	219	1434	1653
32	300	40	800	840
33	200	135	110	245
34	100	130	97	227
35	500	190	912	1102
36	100	760	760	1520
37	385	52	60	112
38	300	30	103	133
39	350	57	860	917
40	50	600	2757	3357
41	600	50	65	115
42	250	10	419	429
43	500	4	78	82
44	650	62	83	145
45	135	40	233	273
46	150	30	907	937
47	400	24	125	149

C15 NARAYANAN (1995) - N.Z. OFFICES

Fire load surveys were conducted in 5 life insurance offices in Wellington's central business district. The survey method consisted of weighing some items and using this weight for other similar items in the same room. The estimated values of fixed, movable and total fire load for each of the offices are given in the table along with the average values and standard deviations based on fitting a normal distribution to the data.

Office sample	Fixed fire load $\left(\mathrm{MJ} / \mathrm{m}^{2}\right)$	Movable fire load $\left(\mathrm{MJ} / \mathrm{m}^{2}\right)$	Total fire load $\left(\mathrm{MJ} / \mathrm{m}^{2}\right)$
A1	133	442	
A2	103	323	575
A3	110	837	426
A4	112	678	947
A5	315	354	790
Average	164	476	670
Standard deviation	84	234	681
		227	

C16 BENNETTS ET AL. (1997)
 - AUSTRALIAN SHOPPING CENTRES

As part of Fire Code Reform Centre Project 6, fire loads for a large number of specialty shops, parts of a major department store and parts of a discount variety store in a major shopping centre in Melbourne were determined. The mass of each item of combustible material in the stores was estimated based on knowledge of the mass of similar items weighed in the laboratory, and this was converted to an equivalent mass of wood.

Shop Type	Number of shops	Fire load density ($\mathbf{k g} / \mathbf{m}^{\mathbf{2}}$)					
		Contents		Floor		Total	
		Average	Std. Dev.	Average	Std. Dev.	Average	Std. Dev.
Accessories	6	35	20	6	4	41	19
Chemist / cosmetics	8	39	21	2	3	41	20
Clothing	42	36	19	5	5	41	19
Coffee lounge	5	40	15	2	3	43	16
Electrical / music	9	37	18	3	3	40	16
Entertainment	2	16	9	4	2	20	7
Eyewear	3	38	20	6	1	44	20
Food and beverage	16	39	33	1	3	40	34
Food shop	6	31	16	5	5	36	17
Footwear	10	56	30	5	2	61	31
Gifts	6	47	22	4	3	50	22
Hairdressing / beauty	7	45	40	1	2	46	39
Homewares/manchest er	2	90	5	2	2	92	7
Jewellery	9	43	23	2	2	45	23
Medical	2	34	6	5	0	39	6
Miscellaneous	10	63	73	5	8	68	74
Photos	5	47	28	2	3	49	29
Sports	6	39	15	5	1	44	15
Stationery / bookshop	6	98	62	5	0	103	62
Travel	3	52	18	7	4	59	15
Toys / games / hobbies	5	47	32	3	2	50	32
Discount / variety	3	27	21	0	1	27	21
All specialty shops	171	44	32	4	4	48	33
Major stores	-	-	-	-	-	72	-

Shop Type	Number of shops	Fire load density ($\mathrm{MJ} / \mathrm{m}^{2}$)					
		Contents		Floor		Total	
		Average	Std. Dev.	Average	Std. Dev.	Average	Std. Dev.
Accessories	6	650	370	110	70	760	350
Chemist / cosmetics	8	730	390	40	60	760	370
Clothing	42	670	350	90	90	760	350
Coffee lounge	5	740	280	40	60	800	300
Electrical / music	9	690	330	60	60	740	300
Entertainment	2	300	170	70	40	370	130
Eyewear	3	710	370	110	20	820	370
Food and beverage	16	730	610	20	60	740	630
Food shop	6	580	300	90	90	670	320
Footwear	10	1040	560	90	40	1130	580
Gifts	6	870	410	70	60	930	410
Hairdressing / beauty	7	840	740	20	40	860	730
Homewares/manchest er	2	1670	90	40	40	1710	130
Jewellery	9	800	430	40	40	840	430
Medical	2	630	110	90	0	730	110
Miscellaneous	10	1170	1360	90	150	1260	1380
Photos	5	870	520	40	60	910	540
Sports	6	730	280	90	20	820	280
Stationery / bookshop	6	1820	1150	90	0	1920	1150
Travel	3	970	330	130	70	1100	280
Toys / games / hobbies	5	870	600	60	40	930	600
Discount / variety	3	500	390	0	20	500	390
All specialty shops	171	820	600	70	70	890	610
Major stores	-	-	-	-	-	1340	-

* conversion based on heat of combustion $=18.6 \mathrm{MJ} / \mathrm{kg}$

APPENDIX D

ENCLOSURE VENTILATION

D1 INTRODUCTION

The amount of ventilation to a compartment is one of the factors which influences the severity of a fire. Only limited data is available on the likely ventilation properties for different occupancies and that data is summarised in the following section. The results of a preliminary ventilation survey based on drawings for some typical buildings and measured values for shops in a shopping centre are presented in the next section. Finally, based on this information, the assumed ventilation is listed for each Building Code of Australia class considered in this project (classes 2 to 9 inclusive).

D2 EXISTING SURVEYS

Kawagoe and Sekine (1963) - Japanese Buildings

Kawagoe and Sekine (1963) tabulated the ventilation properties for 28 Japanese buildings but did not indicate the occupancy type - in fact, they classified buildings according to their fire load and opening factor rather than occupancy type.
$\left.\begin{array}{|c|c|c|c|c|c|}\hline \text { Building no. } & \begin{array}{c}\text { Floor area } \\ \mathrm{A}_{\mathrm{f}} \\ \left(\mathrm{m}^{2}\right)\end{array} & \begin{array}{c}\text { Opening area } \\ \mathrm{A}_{v} \\ \left(\mathrm{~m}^{2}\right)\end{array} & \begin{array}{c}\text { Opening height } \\ h_{v}\end{array} & \begin{array}{c}\text { Total inside } \\ \text { surface area, } A_{t}\end{array} & \begin{array}{c}\text { Opening factor } \\ A_{v} \sqrt{h_{v}} / A_{t} \\ \left(\mathrm{~m}^{\frac{1}{2}}\right)\end{array} \\ \hline & & & & \\ \left(\mathrm{m}^{2}\right)\end{array}\right]$

* Kawagoe and Sekine present $\sqrt{h_{v}}$ not h_{v}

The mean and standard deviation of the opening factor for this sample are $0.135 \mathrm{~m}^{\frac{1}{2}}$ and $0.055 \mathrm{~m}^{\frac{1}{2}}$, respectively.

Culver (1976) - U.S. Office Buildings

The following ventilation data was obtained as part of a survey of fire load data for 23 office buildings located in various regions throughout the United States.

Occupancy type	Room use	Opening factor $A_{v} \sqrt{h_{v}} / A_{t}\left(f t^{\frac{1}{2}}\right)$		Opening factor $A_{v} \sqrt{h_{v}} / A_{t}\left(m^{\frac{1}{2}}\right)$	
		Average	Standard deviation	Average	Standard deviation
Government	General	0.117	0.103	0.065	0.057
	Clerical	0.089	0.084	0.049	0.046
	Lobby	0.034	0.057	0.019	0.031
	Conference	0.033	0.067	0.018	0.037
	File	0.049	0.070	0.027	0.039
	Storage	0.008	0.032	0.004	0.018
	Library	0.064	0.090	0.035	0.050
Private	General	0.185	0.136	0.102	0.075
	Clerical	0.090	0.110	0.050	0.061
	Lobby	0.023	0.046	0.013	0.025
	Conference	0.087	0.138	0.048	0.076
	File	0.050	0.111	0.028	0.061
	Storage	0.007	0.032	0.004	0.018
	Library	0.035	0.066	0.019	0.036
Government and private	General and clerical	0.146	0.127	0.081	0.070

$\mathrm{A}_{\mathrm{v}}=$ total opening area
$h_{v}=$ height of opening
$A_{t}=$ total area for internal surfaces of room (walls, floor, ceiling)

CIB Design Guide (1986) - German Schools

The following tables of room geometrical and ventilation properties for schools are from CIB W14 (1986) which in turn obtained the data from R. Hass, "Statistical Investigations on Fire Load, System Geometry and Ventilation in Modern School Buildings", Res. Report No. BI7-810705-216 for the Bundesminister fur Raumordnung, Bauwesen und Stadtebau, Technische Universitat Braunschweig, Institut fur Massivbau, Baustoffe und Brandschutz, 1981.

Geometrical properties of groups of rooms:

Groups of rooms	Floor base (m^{2})		Total surrounding area (m^{2})		Volume (m^{3})		Height of room (m)	
	Mean value	$\begin{gathered} 90 \% \\ \text { fractile } \\ \hline \end{gathered}$	Mean value	$\begin{gathered} 90 \% \\ \text { fractile } \\ \hline \end{gathered}$	Mean value	$\begin{gathered} 90 \% \\ \text { fractile } \\ \hline \end{gathered}$	Mean value	$\begin{gathered} \hline 90 \% \\ \text { fractile } \end{gathered}$
Classrooms	69.2	79.4	250.9	281.1	231.3	273.5	3.37	3.74
Rooms of teachers	32.2	47.5	142.3	187.5	111.9	137.5	3.41	3.85
Special rooms	87.2	133.7	308.5	438.8	307.8	476.0	3.53	3.86
Material rooms	47.4	122.0	190.2	448.1	165.9	471.2	3.42	3.85
Lecture rooms	131.3	275.0	420.5	750.0	490.6	900.0	3.59	4.00
Administration rooms	43.6	92.5	174.7	325.0	149.0	312.5	3.33	3.84
Libraries	35.3	56.2	157.3	275.0	130.7	225.0	3.56	3.75
Storerooms	69.9	172.5	260.4	597.5	246.0	645.0	3.44	3.62
Others	84.0	135.0	280.3	422.5	314.5	445.0	3.64	3.85

Face of openings of the groups of rooms:

Groups of rooms	External openings - vertical				External openings - horizontal				Internal openings - vertical			
	Mean value		90\% fractile		Mean value		90\% fractile		Mean value		90\% fractile	
	$\begin{gathered} \mathrm{A}_{\mathrm{v}} \\ \left(\mathrm{~m}^{2}\right) \end{gathered}$	$\frac{A_{v}}{A_{t}}$	$\begin{gathered} \mathrm{A}_{\mathrm{v}} \\ \left(\mathrm{~m}^{2}\right) \end{gathered}$	$\frac{\overline{A_{v}}}{A_{t}}$	$\begin{gathered} \mathrm{A}_{\mathrm{v}} \\ \left(\mathrm{~m}^{2}\right) \\ \hline \end{gathered}$	$\frac{A_{v}}{A_{t}}$	$\begin{gathered} \mathrm{A}_{\mathrm{v}} \\ \left(\mathrm{~m}^{2}\right) \end{gathered}$	$\frac{\overline{A_{v}}}{A_{t}}$	$\begin{gathered} \mathrm{A}_{\mathrm{v}} \\ \left(\mathrm{~m}^{2}\right) \end{gathered}$	$\frac{A_{v}}{A_{t}}$	$\begin{gathered} \mathrm{A}_{\mathrm{v}} \\ \left(\mathrm{~m}^{2}\right) \end{gathered}$	$\frac{A_{v}}{A_{t}}$
Classrooms	15.3	0.06	21.4	0.08	0.23	0.001	0.30	0.001	3.8	0.02	5.9	0.02
Rooms of teachers	9.2	0.06	10.8	0.06	10.7	0.07	14.2	0.08	6.6	0.05	9.0	0.05
Special rooms	19.6	0.06	41.3	0.09	5.9	0.02	10.6	0.02	8.5	0.03	13.0	0.03
Material rooms	11.0	0.06	24.6	0.05	4.2	0.02	15.4	0.03	8.7	0.05	16.4	0.04
Lecture rooms	17.1	0.06	28.0	0.04	2.0	0.01	7.2	0.01	9.0	0.02	19.5	0.03
Administration rooms	12.6	0.07	21.8	0.07	-	-	-	-	6.2	0.04	9.0	0.03
Libraries	10.5	0.07	21.6	0.08	2.8	0.02	4.2	0.02	8.1	0.05	20.0	0.07
Storerooms	6.0	0.02	6.7	0.01	-	-	-	-	9.3	0.04	19.8	0.03
Others	22.2	0.08	26.0	0.06	-	-	-	-	8.3	0.03	16.8	0.04

Narayanan (1995) - N.Z. Offices

Fire load surveys were conducted in 5 life offices in Wellington's central business district. The following ventilation data was also obtained:

	Office Sample No.				
	A 1	A 2	A 3	A 4	A 5
Floor area, $\mathrm{A}_{\mathrm{f}}\left(\mathrm{m}^{2}\right)$	477	1116	1205	425	776
Vent area, $\mathrm{A}_{\mathrm{v}}\left(\mathrm{m}^{2}\right)$	124	160	78.2	66.1	108
Total bounding surface area, $\mathrm{A}_{\mathrm{t}}\left(\mathrm{m}^{2}\right)$	1163	2552	2743	1048	1891
Height of openings, $\mathrm{h}_{\mathrm{v}}(\mathrm{m})$	1.50	1.60	1.50	1.55	1.45
Opening factor, $\mathrm{A}_{\mathrm{v}} \sqrt{\mathrm{h}_{\mathrm{v}} / \mathrm{A}_{\mathrm{t}}\left(\mathrm{m}^{\frac{1}{2}}\right)}$	0.13	0.08	0.03	0.08	0.07

The opening factor mean and standard deviation for this small sample are $0.08 \mathrm{~m}^{\frac{1}{2}}$ and $0.03 \mathrm{~m}^{\frac{1}{2}}$, respectively.

D3 VENTILATION SURVEY

D3.1 Outline

In order to ascertain whether any trends can be observed for the distribution of ventilation properties for occupancies a preliminary survey was conducted based on

1. drawings for some typical flats, motels, a hotel and an aged-care building, and
2. a survey of dimensions and ventilation areas of shops in shopping centres.

The drawings had originally been collected as part of Fire Code Reform Project 4, and the shopping centre data was collected for the Fire Code Reform Project 6 Shopping Centre Review (Bennetts et al. (1997)).

The buildings according to their Building Code of Australia classes are:
Class 2

- 2 Storey Class 2 Building (Flats)
- 3-4 Storey Class 2 Building (Flats)
- 10 Storey Class 2 Building (Flats) $<25 \mathrm{~m}$ in effective height
- 30-40 Storey Class 2 Building (Flats) $>25 \mathrm{~m}$ in effective height

Class 3

- Motel, Lot 2 , corner Taylor and Hillyard Sts, Pialba
- Lochinvar Motel (Alterations and Additions), Lot 8, Windsor Road, Kellyville
- 2 Storey Class 3 Building (Aged Care)

Class 6

- Hotel (without accommodation), Hervey Bay
- Shops in a shopping centre, suburban Melbourne

This survey is very limited in that it considers only a small number of BCA classes, and within these classes generally only a small number of individual buildings.

D3.2 Results

From the drawings, the ventilation properties were calculated for selected compartments (but not for all compartments) within each building. Results are summarised for floor area A_{f}, opening area A_{v}, equivalent opening height h_{v}, opening factor $A_{v} \sqrt{h_{v}} / A_{t}$, and the opening area to floor area ratio A_{v} / A_{f}. Equivalent opening height h_{v} was calculated by two methods that gave very similar results (5% maximum difference). The simpler method involves calculating the weighted average opening height values by multiplying individual opening heights by their respective areas and dividing the sum by the total opening area.. Opening height values presented below were calculated by this method, and the opening factors are consistent with these opening heights. Only vertical openings, eg. door and windows, contribute to the ventilation in the buildings considered in this study.

The calculated opening (or ventilation) area, and therefore opening factor $A_{v} \sqrt{h_{v}} / A_{t}$, is considered to be the maximum possible value, and any value in the range from zero to this maximum value is possible in a fire situation. The typical range of opening factor for which it is expected that variations will make a significant difference to fire severity is $0.01 \mathrm{~m}^{1 / 2}$ to $0.20 \mathrm{~m}^{1 / 2}$ (see Kawagoe and Sekine (1963), Lie (1974), Pettersson et al. (1976)). Intermediate values of opening factor may result in maximum fire severity. There is not a one-to-one correspondence between opening
factor and the opening area to floor area ratio A_{v} / A_{f}, and so it is not possible to give values of A_{v} / A_{f} that coincide with this range of opening factor.

The range of maximum values for the opening factor for Class 2 buildings (flats / home units) is $0.065 \mathrm{~m}^{1 / 2}$ to $0.123 \mathrm{~m}^{1 / 2}$ considering the unit as a whole, or $0.073 \mathrm{~m}^{1 / 2}$ to $0.170 \mathrm{~m}^{1 / 2}$ considering individual bedrooms. The range of A_{v} / A_{f} is 0.178 to 0.272 for the whole unit, and 0.290 to 0.613 for bedrooms.

Class 2	Floor Area $\mathrm{A}_{\mathrm{f}}\left(\mathrm{m}^{2}\right)$	Opening Area $\mathrm{A}_{\mathrm{v}}\left(\mathrm{m}^{2}\right)$	Opening Height $\mathrm{h}_{\mathrm{v}}(\mathrm{m})$	Opening Factor $\left(\mathrm{m}^{1 / 2}\right)$	Area Ratio $\mathrm{A}_{\mathrm{v}} / \mathrm{A}_{\mathrm{f}}$
Flats (2 Storey)					
Unit 1 (Ground Floor)	82.75	14.74	1.47	0.065	0.178
Unit 1 (Ground Floor) - Bedroom 1 Only	14.00	4.07	1.62	0.075	0.290
Unit 1 (Ground Floor) - Bedroom 2 Only	10.59	4.07	1.62	0.092	0.384
Unit 5 (First Floor)	96.06	18.97	1.53	0.067	0.197
Unit 5 (First Floor) - Bedroom 1 Only	12.77	3.69	1.65	0.073	0.289
Unit 5 (First Floor) - Bedroom 2 Only	11.07	3.69	1.65	0.081	0.333
Flats (3 Storey)					0.117
Unit 6 (First Floor)	84.41	22.76	1.92	0.270	
Unit 6 (First Floor) - Bedroom 1 Only	16.53	9.07	2.03	0.170	0.549
Unit 6 (First Floor) - Bedroom 2 Only	11.99	7.35	2.10	0.167	0.613
Unit 7 (First Floor)	88.11	18.23	1.88	0.088	0.207
Unit 7 (First Floor) - Bedroom 1 Only	18.03	7.56	2.10	0.135	0.419
Unit 7 (First Floor) - Bedroom 2 Only	12.88	4.41	1.70	0.091	0.343
Flats (10 Storey)					
Unit 36, 44, 52 (Typical Floor)	88.16	16.38	2.10	0.085	0.186
Unit 35, 43, 51 (Typical Floor)	93.73	25.45	2.04	0.123	0.272
Flats (29 Storey)					
Unit 1	83.48	17.71	2.02	0.086	0.212
Unit 3	108.85	26.54	1.95	0.105	0.244

The range of maximum values for the opening factor for Class 3 buildings (in this case motels and aged care units) is $0.043 \mathrm{~m}^{1 / 2}$ to $0.210 \mathrm{~m}^{1 / 2}$ - the motel units are at the low end of this range and the aged care units at the upper end. The range of A_{v} / A_{f} is 0.129 to 0.426 .

Class 3	Floor Area $\mathrm{A}_{\mathrm{f}}\left(\mathrm{m}^{2}\right)$	Opening Area $\mathrm{A}_{\mathrm{v}}\left(\mathrm{m}^{2}\right)$	Opening Height $\mathrm{h}_{\mathrm{v}}(\mathrm{m})$	Opening Factor $\left(\mathrm{m}^{1 / 2}\right)$	Area Ratio $\mathrm{A}_{\mathrm{v}} / \mathrm{A}_{\mathrm{f}}$
Motel (Pialba)					
Unit 2 (units 3 to 13 similar)	29.40	4.78	1.49	0.050	0.163
Unit 14 (unit 1 similar)	40.07	6.40	1.39	0.053	0.160
Unit 16 (units 17 to 27 similar)	29.40	4.78	1.49	0.043	0.163
Unit 15 (unit 28 similar)	40.07	6.40	1.39	0.050	0.160
Manager's Unit	90.15	23.67	1.68	0.106	0.263
Unit 29	41.26	5.32	1.49	0.043	0.129
Average	45.06	8.56	1.49	0.057	0.173
Motel (Kellyville)	18.48		5.94	1.39	0.084
Unit 1 (units 2 to 6 similar)				0.322	
Aged Care (2 Storey)	428.21	105.06	2.56	0.151	0.245
First Floor - North Wing	16.21	6.91	2.05	0.134	0.426
First Floor - Bedroom 1-70	81.31	33.15	2.46	0.210	0.408
First Floor - Dining/Lounge Room					

Of the Class 6 buildings, only the bar area of one hotel building was considered - the opening factor is $0.043 \mathrm{~m}^{1 / 2}$, and A_{v} / A_{f} is 0.082 .

Class 6 (hotel bar area)	Floor Area $A_{f}\left(m^{2}\right)$	Opening Area $A_{v}\left(m^{2}\right)$	Opening Height $h_{v}(m)$	Opening Factor $\left(\mathrm{m}^{1 / 2}\right)$	Area Ratio A_{v} / A_{f}
Pub (Hervey Bay) Stage 1 (bars)	538.80	44.25	1.77	0.043	0.082

The remaining Class 6 data is for shops in a shopping centre. Shop dimensions and ventilation areas (doors and windows) were reported in the Fire Code Reform Project 6 Shopping Centre Review for a large number of specialty shops in a major shopping centre in Melbourne. Not all window areas could be determined. The opening factor $A_{v} \sqrt{h_{v}} / A_{t}$ was calculated for 106 of the 185 shops based on the ventilation areas and an assumed shop layout. The minimum and maximum values, along with the average and the standard deviation for the floor area, volume, opening area, opening height, total inside surface area, opening factor and the ratio of opening area to floor area are given in the following table.

Class 6 (shops in a shopping centre)	Minimum Value	Maximum Value	Average Value	Standard Deviation
Floor Area, $\mathrm{A}_{\mathrm{f}}\left(\mathrm{m}^{2}\right)$	16	950	105	103
Volume, $\mathrm{V}\left(\mathrm{m}^{3}\right)$	49	2851	329	314
Opening Area, $\mathrm{A}_{\mathrm{v}}\left(\mathrm{m}^{2}\right)$	3.0	59.7	9.9	
Opening Height, $\mathrm{h}_{\mathrm{v}}(\mathrm{m})$	1.0	4.8	0.54	
Total Inside Surface Area, $\mathrm{A}_{\mathrm{t}}\left(\mathrm{m}^{2}\right)$	80.8	2367	359	259
Opening Factor, $\mathrm{A}_{v} \sqrt{\mathrm{~h}_{\mathrm{v}} / A_{\mathrm{t}}\left(\mathrm{m}^{1 / 2}\right)}$	0.019	0.301	0.090	0.054
Area ratio, $\mathrm{A}_{\mathrm{v}} / \mathrm{A}_{\mathrm{f}}$	0.037	0.687	0.216	0.133

The distribution of the opening factor for the shops is plotted below

Opening Factor ($\mathrm{m}^{1 / 2}$)

D4 VENTILATION FOR BCA CLASSES

The following table lists the Building Code of Australia classes considered by this project (ie. classes 2 to 9 inclusive), along with their assumed ventilation expressed as the opening factor $A_{v} \sqrt{h_{v}} / A_{t}$ for a compartment. Where considered appropriate, some current BCA classes have been divided into other non-BCA classes - these are clearly noted.

Low, medium and high values for ventilation for each BCA class were derived from the previous table. The medium value was taken to be the average value, the low value is the average minus 1.65 times the standard deviation with a minimum opening factor of $0.02 \mathrm{~m}^{1 / 2}$, and the high value is the average plus 1.65 times the standard deviation. The low and high values correspond to the 5 and 95 percentile values, respectively.

Class	Description	Opening factor $A_{v} \sqrt{h_{v}} / A_{t}$$\left(m^{1 / 2}\right)$		
		Low	Medium	High
2	A building containing two or more soleoccupancy units each being a separate dwelling.	0.05	0.10	0.15
3				
$3 a^{* *}$	(a) Accommodation for the aged, disabled or children; or	0.02	0.13	0.26
$3 b^{* *}$	(b) Others, including - a boarding-house, guest house, hostel, lodging-house or backpackers accommodation; or - a residential part of an hotel or motel; or - a residential part of a school; or - a residential part of a health-care building which accommodates members of staff.	0.02	0.06	0.11
4	A dwelling in a building that is Class $5,6,7,8$ or 9 if it is the only dwelling in the building.	0.05	0.10	0.15
5	An office building used for professional or commercial purposes, excluding buildings of Class 6, 7, 8, or 9 .	0.02	0.08	0.20
6	5 A shop or other building for the sale of goods by retail or the supply of services	0.02	0.09	0.19
	(a) an eating room, cafe, restaurant, milk or soft-drink bar; or (b) a dining room, bar, shop or kiosk part of a hotel or motel; or (c) a hairdresser's or barber's shop, public laundry, or undertaker's establishment; or (e) market or sale room, showroom, or service station.			
7 7a**	A building which is- (a) a carpark	0.02	0.1	0.3
7b**	(b) for storage, or display of goods or produce for sale by wholesale.	0.02	0.09	0.19
88	A laboratory, or a building in which a handicraft or process for the production, assembling, altering, repairing, packing, finishing, or cleaning of goods or produce is carried on for trade, sale, or gain. (a) purpose-built	0.02	0.09	0.19
$8 b^{* *}$	(b) general purpose	0.02	0.09	0.19

** Not a current BCA class.

Class	Description	Opening factor $A_{v} \sqrt{h_{v}} / A_{t}$$\left(\mathrm{m}^{1 / 2}\right)$		
		Low	Medium	High
9 aa	A building of a public nature: (a) A health-care building; including those parts of the building set aside as a laboratory; or (b) An assembly building, but excluding any other parts of the building that are of another Class, including	0.02	0.09	0.19
$9 \mathrm{~b}^{* *}$	- a primary or secondary school, including a trade workshop, laboratory or the like; or	0.02	0.09	0.19
9c**	- disco or nightclub; or	0.02	0.09	0.19
9d**	- exhibition hall; or	0.02	0.09	0.19
$9 \mathrm{e}^{* *}$	- theatre or public hall with stage; or	0.02	0.09	0.19
$9 f^{* *}$	- theatre or public hall without stage; or	0.02	0.09	0.19
$9 \mathrm{~g}^{* *}$	- other assembly buildings	0.02	0.09	0.19

D5 REFERENCES

Bennetts, I.D., Culton, M., Dickerson, M.L., Lewins, R., Poh, K.W., Poon, S.L., Ralph, R., Lee, A.C., and Beever, P.F. (1997). "Shopping Centre Review", Project 6, BHP Research / Fire Code Reform Centre, BHPR/SM/R/G/058.

CIB W14 (1986). "Design Guide - Structural Fire Safety", Fire Safety Journal, Vol. 10, No. 2, pp.75-137.

Culver, C.G. (1976). "Survey Results for Fire Loads and Live Loads in Office Buildings", NBS Building Science Series 85, US Department of Commerce / National Bureau of Standards, May 1976.

Kawagoe, K. and Sekine, T. (1963). "Estimation of Fire Temperature-Time Curve in Rooms", Occasional Report No. 11, Building Research Institute, Japan.

Lie, T.T. (1974). "Characteristic Temperature Curves for Various Fire Severities", Fire Technology, vol. 10, no. 4, November, pp.315-326.

Narayanan, P. (1995). "Fire Severities for Structural Fire Engineering Design", BRANZ Study Report 67, Building Research Association of New Zealand, New Zealand.

Pettersson, O., Magnusson, S.E., and Thor, J. (1976). "Fire Engineering Design of Steel Structures", Bulletin 52, Division of Structural Mechanics and Concrete Construction, Lund Institute of Technology, Sweden.

APPENDIX E

CALCULATION OF EVACUATION USING GUIDELINES METHOD

E1 BACKGROUND

There is relatively little information in the literature, gathered into an accessible form, which may be used to estimate the overall time it takes people to leave a building, once a fire has started. As noted above, the evacuation time for people to get out once they start to move, has been widely studied, but reliable estimates for the response and coping times are still not available, and such data will always be difficult to gather, as there is a large psychological element, and a good deal of variability in human behaviour.

It should be noted in passing at this point however, that the popular concept of panic in response to a fire emergency is erroneous. People may behave anti-socially, though very often they do not, but in general they behave rationally according to the information that is to hand. That information may be inadequate or misleading, or people may have overlooked the existence of fire exits close at hand, but by and large there is little evidence of the irrational behaviour known as panic.

The Fire Engineering Guidelines has attempted to provide a calculation procedure for estimating the escape times from building fires. Though the Chapter in which the method is presented is very well referenced from international sources, it is not clear that the methodology may be directly derived from the sources quoted, and such derivation has not been published in the scientific literature. It has been observed that the use of the Guidelines method results in very long times for escape, such that even a modest fire in an office building for example would give rise to a large number of fatalities. This is not observed in practice, since deaths in office fires are relatively rare. Though the method may be treated as conservative, it must be used with caution.

The Guidelines method is useful in that it permits calculations for a range of occupancies to be calculated, and differences in the provision of types of alarm and levels of evacuation training to be taken into account. However, the extent to which the data upon which the method is based supports the figures deduced is unclear.
literature.

E2 SUMMARY OF METHOD FOR ESTIMATING ESCAPE TIME

E2.1 RELEVANT TIME CALCULATIONS

The Guidelines assumes that the time for people to make their way out of a building is made up as a sum of the cue time, the response time, the coping time and the time to move to a place of safety.

An estimate must be made first of all of the cue time. People within a building become aware of a fire, or an incident that may be a fire, in a number of different ways. They may smell smoke, see flames, hear breaking glass. These may be termed direct cues arising from the fire itself, likely to make people respond quickly and effectively to the fire emergency. People may also be subject to indirect cues such as hearing a fire alarm bell or being told by someone else that there is a fire. In the present approach, it is assumed that the cue time is zero, since the time prior to fire detection has no effect in the consideration of fire resistance. This is not necessarily a conservative assumption, but other conservative assumptions could be considered to cancel it out.

The response time is the time taken for people to realise that there is a fire and to do something as a result. The speed of response to the cues varies depending on a wide range of parameters to do with the location and activity of the people involved, their relationship to one another and the priorities they assign to the need to evacuate.

Having decided to respond, people may not necessarily escape, but spend their time in investigating and tackling the fire, warning and assisting others, locating or protecting valuables. This period of time is referred to in the Guidelines as the coping time. When people finally decide to move there is a time associated with travel to the exits, movement along corridors, down stairs and out of doors. In order to calculate evacuation times, it is necessary to incorporate all of these factors into a total evacuation time. Of these three time periods, the response time, the coping time and the evacuation time, most is known about the latter, though in many building types, the time taken for the first two activities may exceed the evacuation time by a large factor. It is beyond the scope of this project to embark upon a comprehensive study of escape times, and use will be made of values available in the The Guidelines gives best, average and worst scenarios for the response and coping times, based on different types of fire cue and alarm system. Average times based on a fire alarm bellare used in the present analysis.

E2.2 WEIGHTING FACTORS

The system of scoring in order to weight the various parts of the evacuation time is deduced from a chart, Table 7.9 given in Chapter 7 of the Guidelines. The chart assesses 8 attributes for each occupancy, and is marked with stars to indicate the influence of a particular attribute on time to escape for a range of different occupancies. For example, in hospitals levels of alertness and mobility are likely to be low, and each is rated with one star for occupant response; in offices levels of alertness and mobility are likley to be high, and these attributes are rated with 5 stars. Within each occupancy the three most important attributes are unticked and the 5 lesser attributes are ticked. In arriving at a score for an occupancy the number of stars is multiplied by 0.4 for a ticked item, and by 2 for an unticked item. This score is then divided by 8 , giving a maximum possible final score of 5 and a minimum of 1 .

As pointed out by Marchant, each set of attributes should have the most important items ticked and that there should for consistency be five ticks out of the 8 attributes associated with each occupancy. However, in the published version of the table some of the lines have six ticks and some only four. As the allocation of ticks is subjective it is not easy to identify where the errors lie. However, Marchant has prepared proposed revisions of the table to correct the anomalies, and since his corrections appear to be reasonable, they will be adopted here.

E3 MULTI-STOREY OFFICES

E3.1 PRE-MOVEMENT TIME

The Guidelines method relies first on the identification of the cue that alerts people to the fire. In the case of a multi-storey building, it will be assumed here that the majority of people are alerted by a fire alarm bell, actuated by a smoke detector, a sprinkler system, or the operation by an individual of a break-glass alarm. The Guidelines gives an average time of response to a bell of 7 minutes, which must then be multiplied by a capability factor that relates to the occupancy. Capability factors are calculated from Table 7.9 in the Guidelines, corrected for obvious errors as noted above.

For an office, the response capability factor is 2.8 giving a response time of 20 minutes. Without informative warning systems, the Guidelines gives an average coping time of 6 minutes, and a coping capability factor for offices of 3.25 , giving a total pre-movement time of 40 minutes.

E3.2 EVACUATION TIME

As noted above, a considerable amount of research has been carried out on evacuation times from tall buildings, principally by Pauls. He derived the following equation, claimed to be accurate to within a few per cent for uncontrolled evacuation of multi-storey buildings. It should be noted that controlled evacuation is to be preferred for a number of reasons, but provisions are not explicitly included in the BCA. The time for evacuation T in minutes is given by

$$
\mathrm{T}=2+0.0117 \mathrm{P}
$$

where P is the population per unit effective stair width in people per metre $(\mathrm{P}<800)$. This last parameter requires a little more explanation. Pauls in his studies of human movement, has concluded that people as they move along corridors, through doorways and down stairs do not use the edges of the route and keep towards the centre. The effective doorway, corridor or stairway width achieved is 180 mm narrower than that measured between balustrades. In a tall building, the parameter P is the total population of the building divided by the sum of the effective widths of all the stairways (in m). It is assumed that all occupants have access to all stairs.

The BCA determines the office population as 1 person per $10 \mathrm{~m}^{2}$. The fact that this is known to be high introduces a degree of conservatism into the calculation. The BCA also demands that the total stair width be 10 mm per person up to 200 people on a floor and 8.3 mm per person for each person over 200 on a floor. These widths are independent of building height. For buildings of 3 storeys or more there must be two stairs, and each must be at least 1 m wide, notwithstanding any of the above calculations. By using these figures it is possible to estimate the total evacuation time from buildings of different heights and areas using equation D3.1. The results are summarised in Table D3.1. Populations for the ground floor have been ignored, as these people do not use the stairs.

It can be seen from Table D3.1 that because of the 1 m width limit, the $1000 \mathrm{~m}^{2}$ is overprovided with stairs and evacuation is very rapid. Above this area the time is fairly constant,
being in round numbers, 8 minutes for a 5 -storey building, 15 minutes for a 10 -storey building, 30 minutes for a 20 -story building and 45 minutes for a 30 -storey building. The Guidelines required that these figures are multiplied by a further evacuation capability factor, which, since they are based on correlations of measurements, appears to be a bit severe. The Guidelines capability factor which needs to be applied for office buildings is 3.1, giving over 45 minutes evacuation time for a 10 -storey building, and almost $2 \frac{1}{2}$ hours for a 30 storey building.

$\begin{gathered} \text { Area } \\ \mathrm{m}^{2} \end{gathered}$	Number of Storeys						
	3	4	5	10	20	30	Note
1000	3.4	4.1	4.8	8.4	16	23	2 stairs each 1m wide
2000	4.9	6.3	7.7	15	29	43	2 stairs each 1m wide
3000	4.9	6.3	7.8	15	29	43	2 stairs each 1.4 m wide
4000	5.0	6.6	8.1	16	31	46	3 stairs each 1.2 m wide

Table E3.1 Time in minutes to evacuate office buildings of various heights and areas calculated from BCA provisions and equation E3.1.

E3.3 TOTAL EVACUATION TIME

To arrive at the total escape times, the figures in Table E3.1 must be multiplied by 3.1 and to these times must be added the 40 minutes pre-movement time, calculated above. This procedure gives the following table E3.2.

$\begin{gathered} \text { Area } \\ \mathrm{m}^{2} \end{gathered}$	Number of Storeys						
	3	4	5	10	20	30	Note
1000	51	53	55	66	90	112	2 stairs each 1 m wide
2000	56	60	64	87	130	173	2 stairs each 1m wide
3000	56	60	64	87	130	173	2 stairs each 1.4 m wide
4000	56	60	65	90	136	183	3 stairs each 1.2 m wide

Table E3.2 Total time in minutes for occupants to escape from office buildings of various heights and areas, calculated using Fire Engineering Guidelines method and Table D3.1

E4 MULTI-STOREY HOTELS AND HOSTELS

E4.1 PRE-MOVEMENT TIME

These buildings have been grouped together as representing a set of buildings with similar occupant types in that they may be asleep and possibly unfamiliar with the building. As above for offices, it is assumed that in the case of a multi-storey building, the majority of people are alerted by a fire alarm bell. The Guidelines gives an average time of response to a bell of 7 minutes, which must then be multiplied by a capability factor that relates to the occupancy.

For a hotel, the response capability factor is 3.15 giving a response time of 22 minutes. Without informative warning systems, the Guidelines gives an average coping time of 6 minutes, and a coping capability factor for hotels of 2.95 , giving a total pre-movement time of 40 minutes. It should be noted that this time turns out to be the same as the pre-movement time for offices, in spite of the fact that people in offices are unlikely to be asleep and can communicate readily with one another.

E4.2 EVACUATION TIME

The BCA determines the hotel population as 1 person per $15 \mathrm{~m}^{2}$. The requirements for staircase widths are the same as those for the office buildings noted above. By using these figures it is possible to estimate the total evacuation time from buildings of different heights and areas using equation 10.1. The results are summarised in Table E4.1.

It can be seen that the evacuation times are less for the hotel, because the population is less and the minimum stairway widths apply for all but the largest floor plate. It should be noted that in practice, it may not be possible to locate 2 stairs on the larger floors such that the travel distance requirements of the BCA can be met. So it may be that one or more additional stairs which must be a least 1 m wide would have to be added, which would reduce the evacuation times considerably.

$\begin{gathered} \text { Area } \\ \mathrm{m}^{2} \end{gathered}$	Number of Storeys						
	3	4	5	10	20	30	Note
1000	3.0	3.4	3.9	6.3	11	16	2 stairs each 1m wide
2000	3.9	4.9	5.8	11	20	30	2 stairs each 1m wide
3000	4.9	6.3	7.7	15	29	43	2 stairs each 1m wide
4000	4.8	6.2	7.6	15	29	42	2 stairs each 1.3 m wide

Table D4.1 Time in minutes to evacuate hotel buildings of various heights and areas calculated from BCA provisions and equation E3.1.

E4.3 TOTAL EVACUATION TIME

To arrive at the total escape times, the figures in Table E4.1 must be multiplied by 2.9 and to these times must be added the 40 minutes pre-movement time, calculated above. This procedure gives the following table E4.2.

$\begin{gathered} \text { Area } \\ \mathrm{m}^{2} \end{gathered}$	Number of Storeys						
	3	4	5	10	20	30	Note
1000	49	50	51	58	72	86	2 stairs each 1m wide
2000	51	54	57	71	98	126	2 stairs each 1m wide
3000	54	58	62	83	124	166	2 stairs each 1m wide
4000	54	58	62	82	123	163	2 stairs each 1.3 m wide

Table E4.2 Total time in minutes for occupants to escape from hotel buildings of various heights and areas, calculated using Fire Engineering Guidelines method and Table E4.1

E5 MULTI-STOREY APARTMENT BUILDINGS

E5.1 PRE-MOVEMENT TIME

Assuming that the occupants are alerted by a bell then the Guidelines response time is 7 minutes, with a response capability factor of 3.1, giving a response time of 28 minutes.
There is a further consideration here however. It may be assumed that in a high rise hotel, the actuation of a detector in any room would sound an alarm throughout the building. This is not the case in a block of apartments. Though a smoke alarm would be fitted in each apartment to comply with BCA requirements, this would not be wired to the main alarm system. There would have to be smoke in the corridor, or a break glass alarm would have to be actuated before the bell would start to ring. Such a sequence of events would be taken into account in a specific fire engineering design of an apartment building, but on a generic basis this is harder to account for.
Without an informative evacuation system, the coping time would be 6 minutes with a coping capability factor of 4.25 , giving a coping time of 26 minutes.
The overall pre-movement time is therefore 54 minutes.

E6 EVACUATION TIME

The BCA does not give population figures for apartments, presumably on the basis that the 1 m wide stairs are adequate for the relatively low population densities which are encountered in apartments. If we assume that a small apartment would be $100 \mathrm{~m}^{2}$, with a population of perhaps 4 people then the population would be $25 \mathrm{~m}^{2} /$ person. This is considered to be very conservative. Using exactly the same method as before and with an evacuation capability factor of 3.3 gives the total escape times as shown in Table D5.1.

$\begin{gathered} \text { Area } \\ \mathrm{m}^{2} \end{gathered}$	Number of Storeys						
	3	4	5	10	20	30	Note
1000	62	63	64	69	78	88	2 stairs each 1 m wide
2000	64	66	68	78	96	115	2 stairs each 1 m wide
3000	66	69	72	86	114	143	2 stairs each 1 m wide
4000	66	69	72	85	113	141	2 stairs each 1m wide

Table D5.1 Total time in minutes for occupants to escape from apartment buildings of various heights and areas, calculated using Fire Engineering Guidelines method.

E7 SINGLE STOREY BUILDINGS WITH LARGE POPULATIONS

These buildings might include sports centres, stadiums, shopping centres, transport terminals, schools and exhibition halls where the time to evacuate is primarily determined by the time for which people queue at exits, plus the premovement time, as opposed to the high rise buildings described above, where a significant proportion of the time may be spent in the stairs. It is assumed here that:

- the BCA requires no more than a bell to alarm people even though owners may install PA systems which could be used in a fire
- the doorway width is 0.25 m narrower than the exit width, as permitted by the BCA
- the effective doorway width is 0.3 m narrower than the doorway measured width as given by Nelson and McLennan in the SFPE Handbook
- the rate of flow of people through doors is 1.3 persons/second/per m of effective width as given by Nelson and McLennan

Other large single storey buildings would be similar to the sports hall, as the BCA requirements for escape width are not specific to Class, apart from hospitals and open spectator stands. The main thing to notice is that the calculation method suggests that the time to clear a single storey building with a large population will be about 10 minutes once people start to move, regardless of the seating capacity, and use.

Following the same methodology as given in the Guidelines, response, coping and weighting factors have been calculated and applied to arrive at a total evacuation time. In the Guidelines the weighting factors are calculated differently for assembly buildings and for sports stadiums and stations. But in practice it can be seen from Table D6.2 that this distinction makes very little difference to the overall times calculated for people to escape. Once again it can be seen that 45-50 minutes covers all sizes and uses of single storey buildings with large populations.

Use of Building	Population	Number exits	Total exit width/m	Total doorway width/m	Total effective width/m	Evacuation time	Weighting factor	Evacuation time
Assembly Buildings	500	2	4.25	3.75	3.15	2.0	4.55	9.1
	1000	4	8.0	7.0	5.8	2.2	4.55	10
	2000	8	15.5	13.5	11.1	2.3	4.55	10.5
	3000	12	23	20	16.4	2.3	4.55	10.5
Sports Centres, Stations	500	2	4.25	3.75	3.15	2.0	3.95	7.9
	1000	4	8.0	7.0	5.8	2.2	3.95	8.7
	2000	8	15.5	13.5	11.1	2.3	3.95	9.1
	3000	12	23	20	16.4	2.3	3.95	9.1
Open Spectator Stands	2000	8	17	15	12.6	2.0	3.95	7.9
	5000	18	35	30.5	25.1	2.6	3.95	10.3
	20,000	60	125	110	92	2.8	3.95	11.1

Table D6.1 Total Escape Times in Minutes from Large Single Storey Buildings with High Populations

Use of Building	Population	Response time	Weighting factor	Coping time	Weighting factor	Evacuation time	Weighting factor	Total escape time
Assembly Buildings	500	7	2.4	6	3.55	2.0	4.55	47
	1000	7	2.4	6	3.55	2.2	4.55	48
	2000	7	2.4	6	3.55	2.3	4.55	49
	3000	7	2.4	6	3.55	2.3	4.55	49
Sports Centres, Stations	500	7	2.0	6	3.85	2.0	3.95	45
	1000	7	2.0	6	3.85	2.2	3.95	46
	2000	7	2.0	6	3.85	2.3	3.95	46
	3000	7	2.0	6	3.85	2.3	3.95	46
Open SpectatorStands	2000	7	2.0	6	3.85	2.0	3.95	45
	5000	7	2.0	6	3.85	2.6	3.95	47
	20,000	7	2.0	6	3.85	2.8	3.95	48

Table D6.2 Total Escape Times in Minutes from Large Single Storey Buildings with High Populations

E8 HOSPITALS, NURSING HOMES AND AGED CARE

These buildings are unlikely to be high rise, though they might be multi-storey. The occupants are likely to need assistance in evacuating, and may be slow in response and coping as well.

E9 SHOPS

Use of Building	Population	Response time	Weighting factor	Coping time	Weighting factor	Evacuation time	Weighting factor	Total escape time
Single Storey Shopping Centres	2000	7	3.05	6	3.6	2.3	4.65	54
	5000	7	3.05	6	3.6	2.3	4.65	
	20,000	7	3.05	6	3.6	2.3	4.65	
Multi Storey Shopping Centres	2000	7	3.05	6	3.6	2.3	4.65	54
	5000	7	3.05	6	3.6	2.3	4.65	
	20,000	7	3.05	6	3.6	2.3	4.65	

APPENDIX F

FIRE BRIGADE ACCESS TIMES

F1 INTRODUCTION

It is assumed here that the fire brigade require access to buildings with internal hydrants in the sense that fire resistance requirements will have to be calculated to make access to those hydrants possible during a fire. Naturally the fire resistance requirements do not alter the judgment which will be applied by fire officers at the scene to determine whether entry to a building is appropriate or not.

It is essential not only therefore to establish what this time is for real buildings, but also to identify the buildings in which there are hydrants to which the arguments could be applied.

F2 INTERNAL AND EXTERNAL HYDRANTS

The BCA demands that.....
E1.3 (a) A fire hydrant system must be provided to serve a building-
(i) having a total floor area greater than $500 \mathrm{~m}^{2}$ and
(ii) where a fire brigade service is available to attend a building fire.
(b) The fire hydrant system-
(i) must be installed in accordance with AS 2419.1; and
(ii) where internal hydrants are provided, they must serve only the storey on which they are located except that........"

AS 2419.1 demands that.....

2.1 ...Fire hydrants shall be provided within properties as required by the regulatory authority. Such hydrants may be required internally, externally, or on roofs.......
4.1 (Amdt 1 Oct 1996) gives details of provision and location of hydrants. Location is controlled by hose and hose stream coverage -60 m hose +10 m stream for external hydrants (but only 30 m can be within the stairway), 30 m hose +10 m stream for internal. Coverage revolves around floor coverage - there is no mention of external walls or roofs (except where occupants use the roof for evacuation).
4.3.1.3 says "Internal hydrants shall be provided to protect the whole building or those parts of the building not protected by external hydrants". Just what is involved in protecting the whole building is left to the imagination.

Buildings where internal hydrants might be provided
1 Internal hydrants could be provided to meet the requirements in any building over $500 \mathrm{~m}^{2}$.

Internal hydrants must be provided in any building where the coverage requirements cannot be achieved with external hydrants. The $30 \mathrm{~m}+10 \mathrm{~m}$ corresponds to the 40 m exit travel distance in Class $5-9$ buildings. It is not possible to specify which buildings (in terms of BCA groupings) must have internal hydrants as the coverage will depend on internal layout. However, any building where the distance from the ground to the upper floor is greater than 30 m must have internal hydrants; and any building with a ground floor dimension greater than 70 m must have internal hydrants.

Fire Control Time- Breakdown by Authority Type.

Fire Control Time
Data were obtained from the AIRS Data Base maintained at CSIRO for the year 1993/94.

Data were excluded from the statistics if AIRS Field A23 (Type of Incident) did not equal " 11 Fire in a structure, involving a structure".

Data were excluded from the statistics if AIRS Field A6 (Alarm Date) equalled '99/99/99'.

Data were excluded from the statistics if AIRS Field A25 (Control or "Stop" Date) equalled '99/99/99'.

Data were excluded from the statistics if AIRS Field A8 (Alarm Time) equalled 999999.

Data were excluded from the statistics if AIRS Field A26 (Control or "Stop" Time) equalled 999999.

Data were excluded from the statistics if AIRS Field A8 (Alarm Time) equalled 0.
Data were excluded from the statistics if AIRS Field A26 (Control or "Stop" Time) equalled 0 .

Data were excluded from the final plots if the extracted Code was unrecognised (possibly because an incorrect Code had been entered or the Code omitted).

The fire control times were estimated by using the differences in the Control Time and the Alarm Time (accounting for possible differences in the Control and Alarm dates).

The breakdown by Authorities was accomplished by using AIRS Field A2 (Authority Type). This field breaks the Authorities into the following groups:

Predominantly urban.
Mixed urban/rural.
Predominantly rural.
Predominantly forested.
Aviation.

APPENDIX G

MODEL FOR BARRIER FAILURE

BHPR/R/1997/006

Modelling Barrier Failure Times

by
SLPoon
I R Thomas
I D Bennetts
Refereed by: V R Beck
November 1997
Circulation: Unrestricted

DISCLOSURE NOTICE

(Please read before reading report)

Purpose:

This report describes methods for predicting the times of failure of barrier and structural elements of construction exposed to an enclosure fire in a building. The models have been coded into a computer program called BSpread which will be used as part of the development of Fire Code Reform Centre Project 4 Fire Safety System Model for residential buildings.

Audience:

The development work described in this report is part of an ongoing work for the Fire Code Reform Centre's Project 4 entitled "Fire Safety System Model Residential Buildings".

Assumptions/Qualifications:

The methodology described in this report has been compared against selected published test results. BHP does not accept responsibility for any use of or reliance on the results of the method unless expressly agreed by in writing.

FURTHER InFORMATION:

External Source Materials:

BHP takes no responsibility for source materials used in this report that are not generated by BHP.

EXECUTIVE SUMMARY

This report describes the models that have been developed for predicting the failure times of barriers exposed to an enclosure fire in a building. Failure times due to failure from structural adequacy, integrity and insulation are considered. Models for the failure times of structural frame elements are also developed to be used in conjunction with barriers which depend upon the stability of the structural elements for support. Models have been developed for the following elements of construction:

- Steel Stud Walls
- Masonry Walls
- Concrete Walls and Shafts
- Concrete Beams and Slabs
- Concrete Columns
- Steel Structural Members
- Metal Shafts and Ducts

The work described in this report was undertaken as part of Fire Code Reform Centre Project 4 entitled "Fire Safety System Model - Residential Buildings". A computer program called BSpread has been written to be used as part of the development of the Fire Safety System Model for residential buildings.
The results of each of the models have been validated against selected published test results for thermal performance only. Structural performance is implied on the basis that the models for structural behaviour under elevated temperatures were adopted from established sources. Due to a paucity of tests on elements exposed to real fires, comparisons have only been possible with standard fire tests. However, it is believed that accuracy in the prediction of thermal response is not sensitive to the differences in the shape of the temperature time curves between real and standard fires.

Barriers which are not considered in this report are construction elements made of timber (e.g. timber stud wall, timber flooring) and barriers which have combustible linings.
The models can be extended to develop distribution functions of time-dependent failure probabilities of the barriers using a Monte Carlo simulation approach for the purpose of conducting a risk analysis. This is achieved by varying the input values for each barrier according to appropriate distribution functions over a large number of runs. These calculations are not done in this report.
The models have been developed to be relatively simple such that they will have a fast execution time and yet sufficiently accurate such that they can be incorporated into a risk assessment analysis. Overall, the models show reasonable and sometimes conservative predictions for its simplicity in structure.

CONTENTS

Page No.

G1 Introduction 1
G2 General Methodology 2
G2.1 FAILURE MODES -2
2.1.1 Openings in Barriers 2
G2.2 HEAT SOURCE - FIRE -2
G2.3 THERMAL RESPONSE -3
2.3.1 Modes of Heat Transfer 3
2.3.2 Effect of Fire on Material Properties of Barrier 4
2.3.3 Effect of Moisture In Barrier material 4
G2.4 STRUCTURAL RESPONSE -5
2.4.1 End Conditions 5
2.4.2 Strength in Fire 5
2.4.3 Analysis 5
2.4.4 Structural Failure Path 5
2.4.5 Redundancy 6
G2.5 INDEPENDENT BARRIER RANDOM VARIABLES -6
G2.6 CALCULATING FAILURE PROBABILITIES -6
G3 Failure Models 8
G3.1 GENERAL -8
G3.2 STEEL STUD WALLS -9
3.2.1 Typical cross-section 9
3.2.2 Input Data 9
3.2.3 Failure Model 9
G3.3 MASONRY WALLS 10
3.3.1 Longitudinal cross-section. 10
3.3.2 Input Data 10
3.3.3 Failure Model 10
G3.4 CONCRETE WALLS AND SHAFTS 12
3.4.1 Typical cross-section 12
3.4.2 Input Data 12
3.4.3 Failure Model 12
G3.5 CONCRETE BEAMS AND SLABS 13
3.5.1 Typical cross-section 13
3.5.2 Input Data 13
3.5.3 Failure Model 13
G3.6 CONCRETE COLUMNS 15
3.6.1 Typical cross-section 15
3.6.2 Input Data 15
3.6.3 Failure Model 15
G3.7 STEEL STRUCTURAL MEMBERS 16
3.7.1 Typical cross-sections 16
3.7.2 Input Data 16
3.7.3 Failure Model 16
G3.8 METAL SHAFTS AND DUCTS 18
3.8.1 Typical cross-section 18
3.8.2 Input Data 18
3.8.3 Failure Model 18
G4 Validation of models 19
G5 Conclusion 20
G6 References 21
G7 Signature page 22
G8 APPENDIX A. Structural Dependency 1
G9 APPENDIX B. Material Properties 1
G9.1 CONCRETE --1
9.1.1 Stress-strain relationships 1
9.1.2 Specific Heat 2
9.1.3 Thermal conductivity 2
G9.2 STEEL -2
9.2.1 Elastic Modulus: 2
9.2.2 Strength: 2
9.2.3 Specific Heat 2
9.2.4 Thermal conductivity 3
G9.3 PLASTERBOARD -3
9.3.1 Specific Heat 3
9.3.2 Thermal conductivity. 3
G9.4 REFERENCES -4
G10 APPENDIX C. Validation of Models 1
G11 APPENDIX D. BSpread - barrier spread program 1
G12 Appendix E. One Dimensional Heat Transfer 2

Definitions

$\left.\begin{array}{ll}\text { Barrier } & \begin{array}{l}\text { A boundary element which may or may not be supported by a frame } \\ \text { element }\end{array} \\ \text { A model of a barrier for predicting its performance against exposure } \\ \text { to fire. In the context of this report, barrier models include the } \\ \text { consideration of frame elements which provide support to boundary } \\ \text { elements and penetration elements such as ducts. } \\ \text { A construction element which forms the boundary or partition of an } \\ \text { enclosure (e.g. wall, ceiling, and floor). Boundary elements may be } \\ \text { structural or non-structural and function to separate spaces in } \\ \text { buildings (hence sometimes called separation element). }\end{array}\right\}$

G1 INTRODUCTION

A fire developing in an enclosure has the potential to spread beyond the boundaries of the enclosure. The route by which a fire can spread is via any opening in the barriers which form the boundaries of the enclosure. Openings in barriers can either occur in a pre-existing state or in a developing state. In the former, the openings exist before the fire occurs and these can be classified as either design openings or non-design openings ${ }^{1}$. In the latter, the openings develop as a result of deterioration of the barriers which are being exposed to the effects of the fire. This report only considers the latter.
The type of barriers which are considered in this report are typical in many buildings. However, because they differ in function, construction material and behaviour in fires, separate consideration of each of them is necessary. In addition, because the behaviour of some barriers are dependent upon the structural system of the building for their support, the inter-dependency of the stability of these barriers requires a knowledge of how the structural system of the building behaves. It is beyond the scope of this report to consider the details of the structural system in its failure analysis of the barrier, particularly the structural redundancy and inter-dependency of the individual elements. However, simple relationships may be adopted to enable a simplified form of analysis. A consideration of this is presented in Appendix A.

The performance of the models which are developed herein adopts the following assumptions:

- The development of the fire is independent of the state of the barrier.

Obviously, the failure of a barrier will create a large opening to the fire enclosure. Because failure of barriers in fires only tends to occur during the fully developed stage of the fire, the fire conditions are therefore likely to be ventilation controlled to a large extent. This will therefore affect the growth and development of the fire and its resulting impact on other barriers.

- The performance of a given barrier is independent of other construction elements.

Although the elements of construction in a particular enclosure are interconnected in many ways, the behaviour of each barrier element is modelled assuming it is not affected by other connected elements.

- All of the models share exposure to the same fire.

Although the barriers are at different locations within an enclosure, it is assumed that they are all exposed to the same time-temperature curve. This is not unreasonable because at the fully-developed stage of the fire, nearly the entire space of the enclosure is at about the same temperature. However, this is not true for large enclosures where spatial variation of the fire is more significant.
The models have been developed to be relatively simple such that they will have a fast execution time and can be readily incorporated into a risk assessment analysis.

[^1]
G2 GENERAL METHODOLOGY

G2.1 FAILURE MODES

For the purpose of a barrier functioning to prevent the spread of flames, failure is considered to have occurred when flames or hot gases pass through sufficiently to ignite combustibles located behind the barrier. Failure of barriers is deemed to have occurred upon collapse of the barrier or failure by loss of integrity of the barrier material modelled as a limiting temperature criterion. For failure by means of a limiting temperature rise on the unexposed surface of the barrier, consideration of an appropriate limiting temperature must be associated with the likelihood of igniting combustibles located on the unexposed side of the barrier. With the exception of failure by spalling in concrete elements, the times of occurrence of each failure mode generally adhere to the following rule

$$
t_{T} \ngtr t_{I} \ngtr t_{A}
$$

where $\quad t_{T}=$ the time of failure due to a limiting temperature rise on the unexposed surface
$t_{I}=$ the time of occurrence of integrity failure of the barrier material
$t_{A}=$ the time of occurrence of structural adequacy failure.
The failure to prevent spread of fire is only relevant for separation elements such as walls and floors. For structural elements which do not have a separating function (i.e. a frame element such as a beam or a column), their failure will need to be assessed in the context of how the means of flame spread are affected. This usually means assessing how failure of a particular structural element will affect the performance of barrier elements which depends upon its stability to remain in place. This is discussed in more detail in the Structural Response section (page 5).

2.1.1 Openings in Barriers

An important aspect of barrier failure is the existence of openings in a barrier. In addition to design openings such as an open door or an open window, the presence of non-design openings such as cracks or gaps in a barrier may also render the barrier ineffective, if it is of sufficient size. Non-design openings should be considered on a probabilistic basis with a value for the likelihood of its occurrence and should be amalgamated with probabilities of the likelihood of the occurrence of design openings.
Non-design openings are typically smaller than design openings. Hence, if the door or window is open, the presence of non-design openings is unlikely to be significant in terms of affecting the overall likelihood of spread. In residential buildings, however, the existence of any significant non-design openings in barriers of enclosures where the doors and windows tend to be shut is highly unlikely. This is due to the following reasons:

- Non-design openings in wall and ceiling barriers permit the passage of unwanted noise or airflow and therefore tend not to occur.
- Non-design openings in floors are also regarded as highly undesirable by the occupant and are therefore unlikely to occur.

G2.2 HEAT SOURCE - FIRE

The heat source to which the barriers are exposed to is a fire expressed as a temperature-time relationship. Hence any fire, including a standard fire, may be modelled as the heat source, provided the temperature-time curve is specified. Real or natural fires which develop in enclosures exhibit growth, fully developed and decay stages. For these fires, factors which affect the development of temperature in the enclosure include the fire load, openings in the
enclosure and the thermal properties of the enclosing boundaries. Variation of these factors can only be considered a priori in the specification of the temperature-time curve.
In this report, only barriers made of noncombustible materials are considered.

G2.3 THERMAL RESPONSE

2.3.1 Modes of Heat Transfer

The fire is modelled as a hot gas medium to which the barrier is exposed to. The modes of heat transfer between the fire and the barrier surface are radiation and convection. The latter is only significant at lower temperatures during the growth stage. Inside the barrier, heat is conducted within the solid material. In barriers with air voids such as metal stud walls, the presence of the air in the voids is conservatively ignored.

2.3.1.1 Heat Transfer Between a Gas Medium and the Barrier Surface

The transfer of heat energy between a gas medium and a barrier surface exposed to the medium is given by

$$
\begin{equation*}
q_{i}=h\left(T_{g}-T_{s}\right) \tag{1}
\end{equation*}
$$

where
$q_{i}=$ heat flux to barrier surface, $\mathrm{W} / \mathrm{m}^{2}$;
$h=$ coefficient of heat transfer, W $/ \mathrm{m}^{2} . \mathrm{K}$;
$T_{g}=$ temperature of the gas medium, K ;
$T_{s}=$ temperature of the barrier surface, K .
The coefficient of heat transfer consists of the convective component and the radiative component, i.e.

$$
h=h_{c}+h_{r}
$$

where
$h_{c}=$ convective heat transfer coefficient;
$h_{r}=$ radiative heat transfer coefficient.
The convective heat transfer coefficient can be calculated from the empirical equation [1], [6]

$$
h_{c}=1.313\left|T_{g}-T_{s}\right|^{1 / 3}
$$

where T_{s} is the surface temperature (K) and T_{g} is the gas temperature (K) to which the surface is exposed to. The radiative heat transfer coefficient is given by

$$
h_{r}=\sigma \varepsilon \frac{T_{g}^{4}-T_{s}^{4}}{T_{g}-T_{s}}
$$

where $\sigma=$ Stefan-Boltzmann constant

$$
\varepsilon=\text { emissivity }
$$

2.3.1.2 Heat Conduction Within Barrier

For a material with a relatively high conductivity (e.g. steel), the temperature within the material may be assumed to be constant throughout and the heat balance can be expressed as

$$
\begin{equation*}
q_{i}+q_{o}=\frac{m \cdot c}{A} \cdot \frac{d T_{s}}{d t} \tag{2}
\end{equation*}
$$

where
$q_{i}=$ heat flux to barrier surface, $\mathrm{W} / \mathrm{m}^{2}$;
$q_{o}=$ heat loss from the material $\left(\mathrm{W} / \mathrm{m}^{2}\right)$;
$m=$ mass, kg ;
$c=$ specific heat, $\mathrm{J} / \mathrm{kg} / \mathrm{K}$;

$$
\begin{aligned}
A & =\text { area of exposed surface, } \mathrm{m}^{2} ; \\
T_{s} & =\text { material temperature, } \mathrm{K} ; \\
t & =\text { time, } \mathrm{s} .
\end{aligned}
$$

For a material with a relatively low conductivity (e.g. concrete), a thermal gradient will exist across the cross-section. The transient changes in temperature within the material is solved using a one-dimensional finite difference approach. This involves discretizing the barrier cross-section into a number of layers parallel to its surface and solving the conservation equations over a time step period assuming that quasi steady state conditions prevail within that time across the layer. Hence equation 2 may be expressed as

$$
q_{i}+q_{o}=\rho . c . \Delta x . \Delta T_{s} / \Delta t
$$

where

```
\(q_{i}=\) eqn 1, between the exposed layer and the fire gases, and
    \(=k \Delta T / \Delta x\) between the other layers;
\(q_{o}=\) eqn 1, between the unexposed layer and the gases that it is in contact with, and
    \(=k \Delta T / \Delta x\) between the other layers;
    \(k=\) thermal conductivity, \(\mathrm{W} / \mathrm{m} / \mathrm{K}\);
\(\Delta T=\) change in temperature, K ;
\(\Delta x=\) layer thickness, m ;
    \(\rho=\) material density, \(\mathrm{kg} / \mathrm{m}^{3}\);
    \(c=\) specific heat, \(\mathrm{J} / \mathrm{kg} / \mathrm{K}\);
\(\Delta t=\) time step, s .
```

Illustration on the use of the above equations to calculate the temperatures using a onedimensional finite difference methodology is given in Appendix E.
In the case of steel stud walls, the plasterboard skins are considered as separate barriers. The temperature of the air space within the wall is taken as the average of the inside surface temperature of the plasterboard skins.

2.3.2 Effect of Fire on Material Properties of Barrier

In order to predict the behaviour of a barrier exposed to a given fire, the material properties which determine the behaviour of the barrier at elevated temperatures must be known. Details of this information are given in Appendix B.

2.3.3 Effect of Moisture In Barrier material

Some of the relatively porous material such as gypsum plasterboard and insulation material contain a significant amount of moisture. When the material is subjected to heat, the moisture is vapourized and is slowly driven off. The temperature of each layer in the material do not rise above $100^{\circ} \mathrm{C}$ until all the moisture in the layer is vapourized. The energy per unit mass of material required to vapourize the moisture is calculated as

$$
\text { where } \begin{aligned}
q_{w} & =H_{w} \times m_{w} \\
q_{w} & =\text { vapourization energy }(\mathrm{J} / \mathrm{kg}) \\
H_{w} & =\text { heat of vapourization of water }\left(\approx 2.44 \times 10^{6} \mathrm{~J} / \mathrm{kg}\right) \\
m_{w} & =\text { moisture content }(\mathrm{kg} / \mathrm{kg})
\end{aligned}
$$

The effects of moisture on material properties at temperatures below $100^{\circ} \mathrm{C}$ have been ignored.

G2.4 STRUCTURAL RESPONSE

2.4.1 End Conditions

The degree of fixity at the ends of structural elements determine the form of structural behaviour and therefore the collapse mechanism which will lead to failure. For the purpose of this project, only simple span conditions have been conservatively considered. However, in the concrete beam and slab model, non-pin-ended conditions have been assumed to better reflect present design and construction practice.

2.4.2 Strength in Fire

The important considerations for structural adequacy in a member are its axial and bending capacities. The capacity of a structural member of a given configuration to withstand a given load is a function of its characteristic mechanical properties. As the property values change with temperature, the capacity of the member also changes. Failure is deemed to have occurred when either the axial or bending capacity, reduced due to the effects of the fire, is exceeded under the applied loads.

In addition, second-order effects may also determine the capacity limit of the member. Of particular significance is the amplification effects of axial loads on a vertical member such as a wall or a column known as P- Δ effects. These effects magnify the applied bending moment on the member due to lateral deformation caused by the axial loads and any offset which may exist between the location of the applied load and the centroid of the member cross-section. They become more pronounced in a fire because of the increased deformation under reduced material strength and possible thermal bowing. However, for residential buildings, it is considered adequate to assume that the vertical elements are sufficiently stocky such that $\mathrm{P}-\Delta$ effects may be ignored.

2.4.3 Analysis

It is required that the level of analysis for structural behaviour in the determination of the time to failure be kept as simple as possible for the purpose of conducting a risk analysis. The level of sophistication which has been adopted in the analysis for determining the failure time of a barrier has been determined on the basis of its relative sensitivity in its behaviour to the effects of fire. Hence a limiting temperature criterion is sufficient for barriers (e.g. steel stud walls) whereas a structural adequacy analysis is required for others (e.g. concrete slabs). The analytical details for each model are given in the Failure Models section which starts in page 8. In addition, the following simplifications are adopted in being consistent with not considering P- Δ effects of vertically loaded members:

1. Concrete Walls and Shafts:

Walls are considered to be effectively braced. Unbraced walls may be analysed as per concrete columns ${ }^{2}$.
2. Concrete Columns:

Columns are considered as stocky and bending capacity limitation due to $\mathrm{P}-\Delta$ effect are ignored.

2.4.4 Structural Failure Path

Barriers are often supported by other structural elements. Failure of the supporting elements can lead to premature failure of the barrier. For example, failure of a column can lead to failure of part of a floor. The consideration of the performance of a floor as a barrier must therefore also consider the performance of the columns which support it. The association

[^2]between separation and structural elements depends upon the structural design system of the building. Considerations of possible associations are briefly described in Appendix A.

2.4.5 Redundancy

Failure of a structural element supporting a barrier may not necessarily lead to failure of the barrier. The loads supported by the structural element may be sufficiently redistributed to other structural elements without leading to collapse of a barrier which it directly supports. For example, failure of a secondary beam member tend not to cause failure of the portion of floor it supports. The redundancy of structural elements depends upon the structural design system of the building. Such effects are not specifically considered in the analysis. However, these effects may be accounted for by considering only critical elements in the system which would lead to failure of the barrier.

G2.5 INDEPENDENT BARRIER RANDOM VARIABLES

Independent barrier random variables refer to random variables of the barrier which influence the variation in the performance of the barrier in withstanding the effects of the fire. They are non fire dependent random variables. Although some of the thermo-physical properties are temperature dependent and are therefore a function of the fire temperature (e.g. specific heat, thermal conductivity), there is an independent variation in terms of how it is temperature dependent. For example, variations both between and within batches of the same type of insulation material will show some differences in their temperature dependencies even when subjected to the same fire.

Typical examples are variation in material properties, cross-sectional dimensions, material composition and application or placement during construction. The following table lists the independent (i.e. non fire dependent) random variables of barriers.

Material	Variability
Steel	variation in material properties, protection material properties, thickness, member dimensions ${ }^{1}$.
Concrete	variation in material properties, composition, member dimensions ${ }^{2}$, cover to steel reinforcement, spalling, application during construction.
Plasterboard	variation in material properties, composition, application during construction. long-term degradation effects, particularly for friable materials.

e.g. variation in actual prescribed steel sizes for a given design
${ }^{2}$ e.g. variation due to ponding effects during placement

G2.6 CALCULATING FAILURE PROBABILITIES

The barrier failure models presented herein will either predict a success or a failure at each time step during which the barrier is being exposed to the fire. However, the time of potential failure is dependent upon the initial configuration assumed for the barrier element. The initial configuration is determined on the basis that the barrier must be designed to withstand exposure under the standard temperature-time curve for a duration equal to the specified Fire Resistance Level (FRL). The failure time of the barrier exposed to real fire conditions is obtained for a barrier configuration that has a specified FRL.

The models can be extended to develop distribution functions of time-dependent failure probabilities of the barriers using a Monte Carlo simulation approach for the purpose of conducting a risk analysis. This is achieved by varying the input values for each barrier according to appropriate distribution functions over a large number of runs. These calculations are not done in this report

G3 FAILURE MODELS

G3.1 GENERAL

Specific input data is required by each model in order to predict its behaviour. The input data required generally comprises of:

- Temperature-time curve of the fire.
- Applied loads (where applicable).
- Thermal and mechanical properties of barrier materials as a function of temperature (default values are given in Appendix B).

In addition, the following input information is shared by the models:

TSpall	Limiting temperature for spalling (integrity failure) of concrete elements $(\sim 1500 \mathrm{~K})$.
TInsFail	Limiting temperature for insulation failure of unexposed surface of wall elements $(\mathrm{K})^{3}$. AS1530 Part 4 defines insulation failure as either an average
rhoConc	temperature rise of 140 K or a maximum temperature rise of 180 K.
Density of concrete elements $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$.	

The units adhere to an MKS (metre, Kelvin, second) format.
Specific input data are detailed in the description of each model. The notation for symbols used in the computer code have been used to describe the input data in order to facilitate the description of the computer notation.

The output of each of the barrier or element models are the times of failure for each of the respective failure modes.

The occurrence of spalling in concrete when exposed to high temperatures may be due to a number of factors, such as moisture content, permeability, local stresses, and the reduced strength at high temperatures. The limiting temperature of $\sim 1500 \mathrm{~K}\left(1200^{\circ} \mathrm{C}\right)$ [7] is an indicative approximation of the temperature level of the concrete when spalling can be expected to occur based on observations from experiments. It is not a precise value but it offers a guidance if no better information is available. Note that the concrete would have lost all its strength at this temperature (Appendix B).
Variation in the concrete density with respect to temperature may be allowed for by adjusting the temperature dependent specific heat capacity values such that
where $\quad c_{T}^{\prime}=$ adjusted specific heat capacity values
$c_{T}=$ temperature dependent specific heat
$\rho_{T}=$ temperature dependent concrete density
See Appendix B for more details.

[^3]
G3.2 STEEL STUD WALLS

3.2.1 Typical cross-section

3.2.2 Input Data

- thwe,thwu,swksm
$t h w e=$ thickness of exposed plasterboard skin (m)
$t h w u=$ thickness of unexposed plasterboard skin (m)
$s w k s m=$ exposed surface area to mass ratio of the steel stud $\left(\mathrm{m}^{2} / \mathrm{kg}\right)$
- pbMoist,pbDryDensity pbMoist $=$ moisture content of the plasterboard (=water mass/dry unit mass) pbDryDensity $=$ plasterboard dry density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
- TFSS,TFPW

TFSS $=$ limiting temperature for stability failure of steel studs $(\sim 1000 \mathrm{~K})^{4}$ $T F P W=$ limiting temperature for integrity failure of plasterboard $(\sim 1000 \mathrm{~K})^{4}$

3.2.3 Failure ModeI

Steel studs are initially shielded by the plasterboard layers until the limiting temperature in the plasterboard is reached. For simplicity, the limiting temperature is compared against the midinternal temperature of the plasterboard. Failure of the plasterboard occurs by disintegration when the internal temperature exceeds its limiting temperature. Integrity failure of the barrier occurs when both skins disintegrate. Structural adequacy failure of the steel studs occur when the temperature of the steel stud exceeds its limiting temperature. The steel temperature is calculated based on Equation 2. It is expected that when the exposed skin fails, the steel stud will exceed its limiting temperature relatively quickly, as will integrity failure of the unexposed skin occur relatively quickly. Failure by insulation occurs when the unexposed skin exceeds the limiting temperature for insulation failure.
Loadbearing studs are not presently considered. However, they may be approximated using Eqn. 3 (page 16) and specifying an appropriate failure temperature.

[^4]
G3.3 MASONRY WALLS

3.3.1 Longitudinal cross-section

3.3.2 Input Data

- thMW,htMW,rhoMasn
th $M W=$ masonry wall thickness (m)
$h t M W=$ effective height ${ }^{5}$ of masonry wall (m) rhoMasn $=$ density of masonry wall $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$

3.3.3 Failure ModeI

Failure occurs under the following conditions:
Structural adequacy: Lateral deflection from thermal bowing at mid height exceeds a critical deflection limit, or average wall temperature exceeds a limiting temperature.
Insulation: Unexposed surface temperature exceeds an insulation limiting temperature.
Integrity: Not modelled, but flagged when failure by structural adequacy occurs.

Conditions

The following conditions are assumed:

- Only single layer masonry walls are considered.
- The model is based on information obtained from standard fire tests [4], [5].
- The effect of load has been ignored because no significant trend on the collapse time was observed.
- The lateral deflection calculated at the midpoint of its effective height is approximated by considering the wall as having a uniform curvature, i.e.

$$
d=\alpha \frac{H^{2}}{8 w} \Delta T
$$

where $\quad d=$ lateral deflection at midpoint of effective height (m)

[^5]```
\(\alpha=\) coefficient of thermal expansion \(\left(\approx 6 \times 10^{-6}\right)\)
\(H=\) effective height of wall (htMW)
\(w=\) width or thickness of wall (\(t h M W\))
\(\Delta T=\) temperature difference between the exposed and unexposed surfaces (K)
 \(=T_{e}-T_{u}\)
where \(\quad T_{e}=\) temperature of the exposed wall surface \(\left({ }^{\circ} \mathrm{C}\right)\)
 \(T_{u}=\) temperature of the unexposed wall surface \(\left({ }^{\circ} \mathrm{C}\right)\)
```

However, observations from the tests indicate that the wall deflections deviate significantly in excess of the above predictions when the gas temperature is about $700^{\circ} \mathrm{C}$ and the corresponding exposed wall surface temperature is about $500^{\circ} \mathrm{C}$. The increase in deflection, due to thermal degradation and changes in material properties under elevated temperatures, is crudely approximated by a applying a 'thermal degradation factor' to the calculated deflection, as follows:

$$
d^{\prime}=1.6 \times d
$$

From the standard fire test results [4], the differential temperature between the exposed and unexposed surfaces increases rapidly until about 30 to 60 minutes and then either stabilises or fails. Failure from lateral deflection is observed to occur when the deflection approaches the brick width. A slightly conservative limit for failure may be taken to be 0.9 w m.
If the wall does not collapse but stabilises over an extended period of the order of 1-2 hours, then it will eventually fail by thermal degradation, depending upon its thickness. The time at which this occurs may be conservatively approximated by the time taken for the average temperature of the wall to reach $700^{\circ} \mathrm{C}$. The average wall temperature $T_{a v}$ is estimated by

$$
T_{a v}=\left(T_{e}+T_{u}\right) / 2
$$

The failure limits for stability are summarised as follows:

$$
\begin{aligned}
d^{\prime} & \geq 0.9 w & & \text { for lateral deflection } \\
T_{a v} & \geq 700^{\circ} \mathrm{C} & & \text { for thermal degradation leading to collapse }
\end{aligned}
$$

## G3.4 CONCRETE WALLS AND SHAFTS

### 3.4.1 Typical cross-section



### 3.4.2 Input Data

- thCW,ecCW,cwFC
$t h C W=$ concrete wall thickness (m)
$e c C W=$ load eccentricity on concrete wall (m)
$c w F C=$ concrete strength at ambient temperatures (Pa)
- bracedCW,cwLoad
bracedCW $=$ braced wall ( $0=$ False, $1=$ True $)$
$c w$ Load $=$ combined line load ( $\mathrm{N} / \mathrm{m}$ )


### 3.4.3 Failure ModeI

Failure occurs under the following conditions:
Structural adequacy: Applied load exceeds concrete strength as defined below.
Insulation: Unexposed surface temperature exceeds insulation limiting temperature.
Integrity: Concrete temperature exceeds spalling temperature.

### 3.4.3.1 Conditions

No in-plane horizontal forces exist.
Shear forces are not critical.

### 3.4.3.2 Braced Wall

Refer AS3600 Clause 11.3 [2] for requirements of a braced wall.
The maximum strength per unit length of a braced wall in compression shall be taken as $N_{u w}$ where

$$
N_{u w}=\left(t_{w}-1.2 e\right) 0.6 f^{\prime}{ }_{c T}
$$

where
$t_{w}=$ wall thickness (refers to $t h C W$ in figure above)
$e=$ the eccentricity of the load measured at right angles to the plane of the wall (refers to $e c C W$ in figure above)
$f^{\prime}{ }_{c T}=$ the characteristic strength of the concrete at elevated temperatures averaged over the cross-section (default values in Appendix B).

### 3.4.3.3 Unbraced Wall

Not considered.

## G3.5 CONCRETE BEAMS AND SLABS

### 3.5.1 Typical cross-section



### 3.5.2 Input Data

- $c b B, c b D, c b C p, c b C n, c b A p, c b A n, c b F y r, c b F c$
$c b B=$ width of element $(b, \mathrm{~m})$
$c b D=$ depth of element $(d, \mathrm{~m})$
$c b C p=$ cover depth of the centroid of the positive steel reinforcement $\left(c^{+}, \mathrm{m}\right)$
$c b C n=$ cover depth of the centroid of the negative steel reinforcement $\left(c^{-}, \mathrm{m}\right)$
$c b A p=$ area of positive reinforcement $\left(A_{s t}^{+}, \mathrm{m}^{2} / \mathrm{m}\right)$
$c b A n=$ area of negative reinforcement $\left(A_{s t}^{-}, \mathrm{m}^{2} / \mathrm{m}\right)$
$c b F y r=$ yield strength of reinforcement at ambient temperatures (Pa)
$c b F c=$ concrete strength at ambient temperatures $(\mathrm{Pa})$
- cbLoad,cbSpan
cbLoad $=$ uniform load ( $\mathrm{N} / \mathrm{m}$ )
cbSpan $=$ element span $(\mathrm{m})$


### 3.5.3 Failure ModeI

The element is assumed to be exposed to the fire from the bottom surface. Failure occurs under the following conditions:

Structural adequacy: Applied load exceeds concrete strength as defined below.
Insulation: Unexposed surface temperature (top side) exceeds insulation limiting temperature.
Integrity: $\quad$ Concrete temperature exceeds spalling temperature.
A typical internal span is assumed as shown below:


The negative bending moment capacities at the ends are calculated as follows:

$$
M_{u}^{-}=A_{s t}^{-} f_{y T}\left(d^{-}-d_{x}^{-}\right)
$$

where
$A_{s t}^{-}=$area of negative reinforcement (cbAn)
$f_{y T}=$ yield strength of negative reinforcement at temperature $T$
(default values in Appendix B)
$d^{-}=$effective depth of section in negative bending
$d_{x}^{-}=$distance from slab soffit to resultant compressive force in negative bending

The positive bending moment capacity at midspan is calculated as follows:


$$
M_{u}^{+}=A_{s t}^{+} f_{y T}\left(d^{+}-d_{x}^{+}\right)
$$

where

$$
\begin{aligned}
A_{S}^{+} & =\text {area of positive reinforcement }(c b A p) \\
f_{y T}= & \text { yield strength of positive reinforcement at temperature } T \\
& \text { (default values in Appendix B) } \\
d^{+}= & \text {effective depth of section in positive bending } \\
d_{x}^{+} & =\text {distance from slab soffit to resultant compressive force in positive bending }
\end{aligned}
$$

Structural adequacy failure is considered to have occurred when the sum of the negative and positive moment capacities reaches $w L^{2} / 8$, i.e.

$$
M_{u}^{+}+M_{u}^{-} \geq w L^{2} / 8
$$

where

$$
\begin{aligned}
& w=\text { uniform combined load on the member (cbLoad }) \\
& L=\text { element span }(c b S p a n)
\end{aligned}
$$

## G3.6 CONCRETE COLUMNS

### 3.6.1 Typical cross-section



### 3.6.2 Input Data

- ccBi,ccDi,ccCp,ccAp,ccFyr,ccFc
$c c B i=$ width of cross-section $(b, \mathrm{~m}) \quad c c D i=$ depth of cross-section $(d, \mathrm{~m})$
$c c C p=$ cover depth to centroid of reinforcement $(c, \mathrm{~m})$
$c c A p=$ area of steel reinforcement at exposed face $\left(A_{s t}, \mathrm{~m}^{2}\right)$
$c c F y r=$ yield strength of reinforcement at ambient temperatures $(\mathrm{Pa})$
$c c F c=$ concrete strength at ambient temperatures $(\mathrm{Pa})$
- $c c g G, c c g Q, c c G, c c Q, c c P h i$
$\operatorname{ccg} G=$ partial load factor for dead load in fire $\quad \operatorname{ccg} Q=$ partial load factor for live load in fire $c c G=$ applied axial dead load $(\mathrm{N}) \quad c c Q=$ applied axial live load $(\mathrm{N})$
$c c P h i=$ ratio of the actual to nominal steel reinforcement strength


### 3.6.3 Failure Model

The column is assumed to be equally exposed on all sides. Structural failure is considered to have occurred when either the axial strength of the concrete is exceeded or the temperature of the reinforcement exceeds the critical temperature determined in accordance with the procedure for the steel structural members (i.e. Equations 3 and 4 in page 16). The axial strength is determined based on the average strength capacity of the column, ie

$$
N_{u c}=\int_{0}^{D / 2} f_{c T}^{\prime} p_{y} d y
$$

where
$f_{c T}^{\prime}=$ the strength of the concrete at temperature $T$,
determined at a distance $y$ from the surface (default values in Appendix B).
$p_{y}=$ perimeter of the region located at a distance $y$ from the surface.
$y=$ distance from the surface
$D=$ the lesser of the column side dimensions.

The column reinforcement refers to the main steel reinforcement and its supporting lateral reinforcement. For slender columns, the reinforcing steel offers resistance to the applied loads in tension (flexure) as well as in compression. As the columns become more stocky, the resistance in flexure reduces. However, at all times, the reinforcing steel provides lateral restraint to confine the concrete in order that its designed compressive stress can be achieved. Because this is a strength requirement, it is therefore not unreasonable to associate its critical temperature using the load ratio approach defined by equations 3 and 4.

Insulation failure is not modelled. However for consistency with the barrier models in the output data, insulation failure is flagged when structural failure occurs.

## G3.7 STEEL STRUCTURAL MEMBERS

### 3.7.1 Typical cross-sections



### 3.7.2 Input Data

For steel beams:

- sbksm,sbgG,sbgQ,sbG,sbQ,sbPhi
$s b k s m=3$-sided exposed surface area to mass ratio $\left(\mathrm{m}^{2} / \mathrm{kg}\right)$
$\operatorname{sbg} G=$ partial load factor for dead load in fire
$\operatorname{sbg} Q=$ partial load factor for live load in fire
$s b G=$ characteristic dead line load (N/m)
$s b Q=$ characteristic live line load ( $\mathrm{N} / \mathrm{m}$ )
$s b P h i=$ ratio of the mean to nominal steel beam strength
- sbith,sbirhod,sbiw,sbicp,sbikp
sbith $=$ insulation thickness (m)
sbirhod $=$ dry density of insulation $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
sbiw $=$ moisture content ratio of insulation (=water mass/dry unit mass, $\mathrm{kg} / \mathrm{kg}$ )
sbicp $=$ specific heat of insulation material $(\mathrm{J} / \mathrm{kg} / \mathrm{K})$
sbikp $=$ thermal conductivity of insulation material (W/m/K)
For steel columns:
- scksm,scgG,scgQ,scG,scQ,scPhi
scksm $=4$-sided exposed surface area to mass ratio $\left(\mathrm{m}^{2} / \mathrm{kg}\right)$
$s c g G=$ partial load factor for dead load in fire
$\operatorname{scg} Q=$ partial load factor for live load in fire
$s c G=$ axial dead load (N)
$s c Q=$ axial live load (N)
$s c P h i=$ ratio of the mean to nominal steel strength
- scith,scirhod,sciw,scicp,scikp
scith $=$ insulation thickness (m)
scirhod = dry density of insulation $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
sciw $=$ moisture content ratio of insulation (=water mass/dry unit mass, $\mathrm{kg} / \mathrm{kg}$ )
scicp $=$ specific heat of insulation material ( $\mathrm{J} / \mathrm{kg} / \mathrm{K}$ )
scikp $=$ thermal conductivity of insulation material (W/m/K)


### 3.7.3 Failure Model

Structural failure is considered to have occurred when the average steel temperature exceeds the critical temperature $T_{c}$ calculated as follows (Clause 12.5 [3]):

$$
\begin{equation*}
T_{c}=905-690 R \tag{3}
\end{equation*}
$$

where

$$
R=\text { load ratio },
$$

$$
\begin{equation*}
=\frac{\gamma_{G} G+\gamma_{\mathrm{Q}} Q}{(1.25 G+1.5 Q) \phi} \tag{4}
\end{equation*}
$$

where
$\gamma_{\mathrm{G}}=$ partial load factor for dead load in fire conditions ( $\operatorname{sbg} G, \operatorname{scg} G$ )
$\gamma_{Q}=$ partial load factor for live load in fire conditions ( $s b g Q, s c g Q$ )
$G=$ characteristic dead load ( $s b G, s c G$ )
$Q=$ characteristic live load ( $s b Q, s c Q$ )
$\phi=$ ratio of the actual to nominal strength (sbPhi, scPhi)

For consistency in the output with the other models, insulation and integrity failures are considered to occur when structural adequacy failure occurs.

## G3.8 METAL SHAFTS AND DUCTS

### 3.8.1 Typical cross-section



### 3.8.2 Input Data

- sdith,sdirho,sdiw,sdicp,sdikp
sdith = insulation thickness (m)
sdirho $=$ insulation density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
sdiw $=$ moisture content ratio of insulation (=water mass/dry unit mass, $\mathrm{kg} / \mathrm{kg}$ )
sdicp $=$ specific heat of insulation material $(\mathrm{J} / \mathrm{kg} / \mathrm{K})$
sdikp $=$ thermal conductivity of insulation material (W/m/K)
- TsdCr,sdth,sdrho
$T s d C r=$ failure temperature of steel sheeting $(\sim 1000 \mathrm{~K})$
$s d t h=$ thickness of steel sheeting $(\mathrm{m})$
$s d r h o=$ density of steel sheeting $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$


### 3.8.3 Failure ModeI

Failure for all the modes are considered to have occurred when the steel sheeting temperature exceeds its limiting temperature, $T s d C r$. As thin walled elements, the limiting temperature is comparable with that for steel studs, TFSS. However, unlike steel studs, the steel sheeting does not bear loads and is likely to continue to act as a membrane at high temperatures. From observations in standard fire tests, performance of ducts tend to surpass the structure which supports it.. The model also conservatively ignores the cooling effect of the presence of the air void within the duct.

## G4 VALIDATION OF MODELS

The results of each of the models have been validated against selected published test results for thermal performance only. This has generally been the approach adopted in the determination of structural code provisions for fire resistance. With the exception of masonry wall tests, elevated temperature tests on loaded structural elements are not normally carried past their thermal failure point (based on temperature limit criteria) to the point of collapse. Usually, failure from structural stability is imminent near the thermal failure point due to the significant loss of strength in the material at this stage. Hence, tests are usually stopped at this point to avoid a catastrophic collapse. In addition, the structural behaviour of loadbearing elements is implied on the basis that the models for structural behaviour under elevated temperatures were adopted from established methods or principles.
Due to a paucity of tests on elements exposed to real fires, comparisons have only been possible with standard fire tests. However, it is believed that prediction of thermal performance is not sensitive to the temperature time curve differences between real and standard fires.
Details of the validation are provided in Appendix C. The model predictions are generally reasonable in comparison to more sophisticated methods that may have been adopted.
The steel stud wall model predictions are quite good except that it is unable to allow for the inflow of hot gases penetrating the deteriorating plasterboard skin towards the thermal failure limit. During this period, the measured temperatures are up to about $100^{\circ} \mathrm{C}$ higher than predicted. However, the prediction of failure times (or times when the tests were stopped) are quite close.

The masonry wall model is based entirely on available test observations.
The thermal predictions for steel are generally quite good. It is believed that this is due to the uniformity of the material providing more consistent thermal properties. Also, its high conductivity and non dependence on moisture enables relatively simplified modelling assumptions.
The model predictions for concrete members, however, are generally more conservative in comparison. It is not known exactly why this is so. Considering that the heat transfer model has been validated against a one dimensional analytical solution (Appendix E), it is suspected that the errors could arise from the input values and thermal related phenomena (e.g. moisture migration) in the concrete material. Due to the variability in material and its composition, the thermal properties of concrete are inherently more variable and show stronger dependence on temperature and moisture content.
Overall, the models show reasonable and sometimes conservative predictions for its simplicity in structure.

## G5 CONCLUSION

This report describes the models that have been developed for predicting the failure times of barriers exposed to an enclosure fire in a building. Failure times due to failure from structural adequacy, integrity and insulation are considered. Models for the failure times of structural frame elements are also developed to be used in conjunction with barriers which depend upon the stability of the structural elements for support. Models have been developed for the following elements of construction:

- Steel Stud Walls
- Masonry Walls
- Concrete Walls and Shafts
- Concrete Beams and Slabs
- Concrete Columns
- Steel Structural Members
- Metal Shafts and Ducts

The work described in this report was undertaken as part of Fire Code Reform Centre Project 4 entitled "Fire Safety System Model - Residential Buildings". A computer program called BSpread has been written to be used as part of the development of the Fire Safety System Model for residential buildings.
The results of each of the models have been validated against selected published test results for thermal performance only. Structural performance is implied on the basis that the models for structural behaviour under elevated temperatures were adopted from established sources. Due to a paucity of tests on elements exposed to real fires, comparisons have only been possible with standard fire tests. However, it is believed that accuracy in the prediction of thermal response is not sensitive to the differences in the shape of the temperature time curves between real and standard fires.
Barriers which are not considered in this report are construction elements made of timber (e.g. timber stud wall, timber flooring) and barriers which have combustible linings.
The models can be extended to develop distribution functions of time-dependent failure probabilities of the barriers using a Monte Carlo simulation approach for the purpose of conducting a risk analysis. This is achieved by varying the input values for each barrier according to appropriate distribution functions over a large number of runs. These calculations are not done in this report.
The models have been developed to be relatively simple such that they will have a fast execution time and yet sufficiently accurate such that they can be incorporated into a risk assessment analysis. Overall, the models show reasonable and sometimes conservative predictions for its simplicity in structure.

## G6 REFERENCES

[1] McAdams, W.H., "Heat Transmission", 3rd Edition, McGraw-Hill, New York (Chap. 13), 1954.
[2] Australian Standard AS 3600-1994, "Concrete Structures", Standards Association of Australia.
[3] Australian Standard AS 4100-1990, "Steel Structures", Standards Association of Australia.
[4] Byrne, S.M., "Experimental Study of the Effect of Applied Load and Slenderness Ratio on the Fire-Resistance Rating of Loadbearing Brick Walls", Experimental Building Station, Department of Construction, MP No. 482, May 1978.
[5] Lawrence, S.J. and Gnanakrishnan, N., "The Fire Resistance of Masonry Walls", Technical Record 531, National Building Technology Centre, April 1988.
[6] Harmathy, T.Z., "Fire Safety Design \& Concrete", Longman, Scientific and Technical, 1993.
[7] Bennetts, I.D., "Behaviour of concrete elements in fire - Part 2", Report no. MRL/PS23/82/005, Melbourne Research Laboratories, Clayton, Victoria, Australia, 1982.
[8] Bennetts, I.D., Proe, D.J. and Thomas, I.R., "Guidelines for Assessment of Fire Resistance of Structural Steel Members", Australian Institute of Steel Construction, September 1987.

## G7 SIGNATURE PAGE

## Report written by:

S L Poon
Senior Research Engineer

I R Thomas
Senior Research Associate

I D Bennetts
Senior Research Associate

Approved by:

G K Stark
Acting Manager Research - Market Programs

## G8 APPENDIX A. STRUCTURAL DEPENDENCY

This appendix provides an indicative means of considering the overall failure of a barrier due to effects of structural failure path and redundancy described earlier in page 5 .

Table 1. Structural dependency of Barriers

| Walls: | Floors: |
| :--- | :--- |
| LB (3F) | LB (3F) |
| NLB (3F) + Support Member (Ignore) | LB (3F) + Column (1F) |
|  | LB (3F) + Main Beam (1F) |
|  | LB (3F) + Wall Support (1F) |

where

```
LB = Load Bearing
NLB = Non-Load Bearing
 3F = three failure modes, i.e. insulation, integrity and structure
 1F = single failure mode, i.e. structure
```

For a barrier consisting of two elements, the probability of failure of the barrier can be calculated using the following equation

$$
P_{F}=1-\left(1-P_{A}\right) \times\left(1-P_{B}\right)
$$

where
$P_{F}=$ failure probability of the barrier
$P_{A}=$ failure probability of the LB/NLB barrier
$P_{B}=$ failure probability of the supporting element
Note that not all of the failure probabilities of the elements are relevant in any given enclosure. For example, in a small enclosure, free-standing columns are uncommon and the main beams, if any, tend to be aligned along the wall boundaries.

## G9 APPENDIX B. MATERIAL PROPERTIES

Temperature dependent thermal conductivity and specific heat properties are required for concrete, steel and plasterboard materials. The data for these may be specified using the format described in Appendix D.

This appendix details the default material property data used by BSpread. The data for thermal conductivity and specific heat properties given below will be used if they are not specified.

## G9.1 CONCRETE

### 9.1.1 Stress-strain relationships

The strength and deformation properties of uniaxially stressed concrete at elevated temperatures is taken from Ref. [3]. The reduced concrete strength at elevated temperature $T^{\circ} \mathrm{C}$ is obtained by applying the corresponding reduction factor $k_{c, T}$ to the strength at $20^{\circ} \mathrm{C}$. Hence

$$
f_{c T}^{\prime}=f_{c}^{\prime} \times k_{c, T}
$$

The strength reduction factor $k_{c, T}$ and the peak strain $\varepsilon_{c u, T}$ at elevated temperatures are shown in Table 2.

TABLE 2. Strength and deformation reduction properties of normal weight CONCRETE AT ELEVATED TEMPERATURES

| Concrete <br> Temperature $T^{\circ} \mathrm{C}$ | $k_{c, T}$ | $\varepsilon_{c u, T} \times 10^{3}$ |
| :---: | :---: | :---: |
| 20 | 1.00 | 2.5 |
| 100 | 0.95 | 3.5 |
| 200 | 0.90 | 4.5 |
| 300 | 0.85 | 6.0 |
| 400 | 0.75 | 7.5 |
| 500 | 0.60 | 9.5 |
| 600 | 0.45 | 12.5 |
| 700 | 0.30 | 14.0 |
| 800 | 0.15 | 14.5 |
| 900 | 0.08 | 15.0 |
| 1000 | 0.04 | 15.0 |
| 1100 | 0.01 | 15.0 |
| 1200 | 0.00 | 15.0 |

The concrete stress-strain relationship at elevated temperatures is obtained as follows:

$$
\sigma_{c, T}=f_{c, T}\left[3 \varepsilon_{r} / 2+\varepsilon_{r}^{3}\right]
$$

where $\varepsilon_{r}=\varepsilon_{c, T} / \varepsilon_{c u, T}$
and $\quad \varepsilon_{c, T}=$ strain at elevated temperature $T^{\circ} \mathrm{C}$.

### 9.1.2 Specific Heat

The specific heat of concrete at elevated temperatures $c_{s}(\mathrm{~J} / \mathrm{kg} \cdot \mathrm{K})$ is obtained from Ref. [4] as follows:

$$
c_{c}=\left\{\begin{array}{cc}
(0.005 T+1.7) / \rho_{c} \times 10^{6} & 0 \leq T \leq 200^{\circ} \mathrm{C} \\
2.7 / \rho_{c} \times 10^{6} & 200<T \leq 400^{\circ} \mathrm{C} \\
(0.013 T-2.5) / \rho_{c} \times 10^{6} & 400<T \leq 500^{\circ} \mathrm{C} \\
(-0.013 T+10.5) / \rho_{c} \times 10^{6} & 500<T \leq 600^{\circ} \mathrm{C} \\
2.7 / \rho_{c} \times 10^{6} & T>600^{\circ} \mathrm{C}
\end{array}\right.
$$

where $\rho_{c}=$ density of concrete $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
$\sim 2400 \mathrm{~kg} / \mathrm{m}^{3}$ for normal weight concrete

### 9.1.3 Thermal conductivity

The thermal conductivity of siliceous aggregate concrete at elevated temperatures $k_{c}$ ( $\mathrm{W} / \mathrm{m} \cdot \mathrm{K}$ ) is obtained from Ref. [4] as follows:
$k_{c}\left\{\begin{array}{cc}-0.000625 T+1.5 & 0 \leq T \leq 800^{\circ} \mathrm{C} \\ 1.0 & T>800^{\circ} \mathrm{C}\end{array}\right.$

## G9.2 STEEL

### 9.2.1 Elastic Modulus:

The elastic modulus ${ }^{6}$ is based on Ref. [1] which gives the following relationships for determining the elastic modulus of steel at elevated temperatures.

$$
\frac{E(T)}{E\left(20^{\circ} C\right)}=\left\{\begin{array}{cc}
1.0+\frac{T}{2000 \ln (T / 1100)} & T \leq 600^{\circ} \mathrm{C} \\
\frac{690(1-T / 1000)}{T-53.5} & 600^{\circ} \mathrm{C}<T \leq 1000^{\circ} \mathrm{C}
\end{array}\right.
$$

### 9.2.2 Strength:

The strength is based on Ref. [2] which gives the following relationships for determining the yield stress of steel at elevated temperatures.

$$
\frac{F_{y}(T)}{F_{y}\left(20^{\circ} \mathrm{C}\right)}=\left\{\begin{array}{cl}
1.0 & T \leq 250^{\circ} \mathrm{C} \\
\frac{720-T}{470} & T>250^{\circ} \mathrm{C}
\end{array}\right.
$$

### 9.2.3 Specific Heat

The specific heat of steel at elevated temperatures $c_{s}(\mathrm{~J} / \mathrm{kg} \cdot \mathrm{K})$ is obtained from Ref. [4] as follows:

[^6]\[

c_{s}\left\{$$
\begin{array}{cc}
(0.004 T+3.3) / \rho_{s} \times 10^{6} & 0 \leq T \leq 650^{\circ} \mathrm{C} \\
(0.068 T-38.3) / \rho_{s} \times 10^{6} & 650<T \leq 725^{\circ} \mathrm{C} \\
(-0.086 T+73.35) / \rho_{s} \times 10^{6} & 725<T \leq 800^{\circ} \mathrm{C} \\
4.55 / \rho_{s} \times 10^{6} & T>800^{\circ} \mathrm{C}
\end{array}
$$\right.
\]

where $\rho_{s}=$ density of steel $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$

$$
=7850 \mathrm{~kg} / \mathrm{m}^{3}
$$

### 9.2.4 Thermal conductivity

The thermal conductivity of steel at elevated temperatures $k_{s}(\mathrm{~W} / \mathrm{m} \cdot \mathrm{K})$ is obtained from Ref. [4] as follows:
$k_{s}\left\{\begin{array}{cc}-0.022 T+48 & 0 \leq T \leq 900^{\circ} \mathrm{C} \\ 28.2 & T>900^{\circ} \mathrm{C}\end{array}\right.$

## G9.3 PLASTERBOARD

### 9.3.1 Specific Heat

The specific heat of gypsum plasterboard at elevated temperatures $c_{g}(\mathrm{~J} / \mathrm{kg} \cdot \mathrm{K})$ is obtained from Ref. [5] as follows:

$$
c_{g}=\left\{\begin{array}{cc}
6.146 T+1.377 & 20 \leq T<78^{\circ} \mathrm{C} \\
150 T-9858 & 78 \leq T<85^{\circ} \mathrm{C} \\
262 T-1.9501 & 85 \leq T<97^{\circ} \mathrm{C} \\
476 T-40311 & 97 \leq T<124^{\circ} \mathrm{C} \\
154507-1097 T & 124 \leq T<139^{\circ} \mathrm{C} \\
16601-105 T & 139 \leq T<148^{\circ} \mathrm{C} \\
1189-1.27 T & 148 \leq T<373^{\circ} \mathrm{C} \\
714 & 373 \leq T<430^{\circ} \mathrm{C} \\
1151-1.014 T & 430 \leq T<571^{\circ} \mathrm{C} \\
1.877 T-501 & 571 \leq T<609^{\circ} \mathrm{C} \\
44.2 T-26300 & 609 \leq T<662^{\circ} \mathrm{C} \\
3000 & 662 \leq T<670^{\circ} \mathrm{C} \\
103570-150 T & 670 \leq T<685^{\circ} \mathrm{C} \\
571 & T \geq 685^{\circ} \mathrm{C}
\end{array}\right.
$$

### 9.3.2 Thermal conductivity

The thermal conductivity of gypsum plasterboard at elevated temperatures $k_{g}(\mathrm{~W} / \mathrm{m} \cdot \mathrm{K})$ is obtained from Ref. [5] as follows:

$$
k_{g}=\left\{\begin{array}{cc}
0.25 & 20 \leq T<100^{\circ} \mathrm{C} \\
0.12 & 100 \leq T<400^{\circ} \mathrm{C} \\
0.00035 T-0.01 & 400 \leq T<800^{\circ} \mathrm{C} \\
0.0013 T-0.77 & T \geq 800^{\circ} \mathrm{C}
\end{array}\right.
$$

## G9.4 REFERENCES

[1] Bennetts, I.D., Proe, D.J. and Thomas, I.R., "Guidelines for Assessment of Fire Resistance of Structural Steel Members", Australian Institute of Steel Construction, September 1987.
[2] Australian Standard AS 3600-1994, "Concrete Structures", Standards Association of Australia.
[3] Eurocode 4 - Design of composite steel and concrete structures - Part 1-2: General rules - Structural fire design, ENV 1994-1-2.
[4] Lie, T.T. (ed.), "Structural Fire Protection: Manual of Practice", ASCE Manuals and Reports on Engineering Practice No. 78, 1992.
[5] Sultan, M.A., "A Model for Predicting Heat Transfer Through Noninsulated Unloaded Steel-Stud Gypsum Board Wall Assemblies Exposed to Fire", Fire Technology, Third Quarter, 1996.

## G10 APPENDIX C. VALIDATION OF MODELS

The results of each of the models have been validated against selected published test results for thermal performance only. Structural performance is implied on the basis that the models for structural behaviour under elevated temperatures were adopted from proficient sources. Due to a paucity of tests on elements exposed to real fires, comparisons have only been possible with standard fire tests. However, it is believed that prediction of thermal performance is not sensitive to the temperature time curve differences between real and standard fires.

## VALIDATION OF STEEL STUD WALL BARRIER FAILURE MODEL

The model predictions have been compared against two published test results:

1. Mohamed A. Sultan, "A Model for Predicting Heat Transfer Through Noninsulated Unloaded Steel-Stud Gypsum Board Wall Assemblies Exposed to Fire", Fire Technology Third Quarter, 1996.
2. Collier, P.C.R.,"Design of LoadBearing Light Timber Framed Walls for Fire Resistance: Part 2". Study Report No. 43, Building Research Association of New Zealand, 1992.
The test results by Collier are for a 10 mm plasterboard whilst Sultan used 16 mm fire rated plasterboard. For both test, the model used the plasterboard properties reported in Sultan's papert. The results are shown in Figure 1 and Figure 2. In the figures, the points are experimental results and the lines are the model predictions. In both cases, the model predicted the plasterboard temperatures reasonably well
The model assumes that failure (complete loss of the plasterboard skin) occurs when the mid-temperature of the exposed plasterboard skin reached $700{ }^{\circ} \mathrm{C}$. This is based on observations made by Sultan (in reference 2 above) that the exposed plasterboard skin was losing its integrity when the surface temperature on the inside (unexposed) surface reached $600^{\circ} \mathrm{C}$. This may be seen in Figure 1, where the temperature of the cavity surface of the exposed plasterboard skin shows a slight increase as it approaches $600^{\circ} \mathrm{C}$. It was reported that the plasterboard was beginning to disintegrate at this temperature and hence more of the hot gases were penetrating the wall cavity. The failure time prediction compared reasonably well.
Figure 2 shows the results of two ( A and B ) full scale fire tests of loadbearing light timber framed walls reported by Collier. The tests were stopped when the walls were judged no longer able to support the applied load. The model predicted a failure time beyond the measured completion times of the tests by about 4 minutes. The prediction is reasonable because the temperature of the inner surface of the unexposed skin (point 3) has not approached the temperature of the inner surface of the exposed skin (point 1) as has been observed in Figure 1.

The prediction of the effect of moisture in the plasterboard is not unreasonable although there appear to be a 'stepped' effect as the moisture is being vapourised. This is because the temperatures shown are the temperatures of the plasterboard slices. As moisture is vapourised, latent heat is lost. However, moisture is not assumed to dissipate through the plasterboard slices, although in practice this would occur.

[^7]

Figure 1. NRCC (SUltan 1996), 16mm Plasterboard


Figure 2. BRANZ (COLLIER, 1992), 9.5mm Plasterboard

## Validation of Masonry Wall Model

The model predictions are compared against the test results reported in references [4] and [5]. Details of the test specimens are summarized in Table 3.

| TABLE 3. M ASONRY WALL TEST | TEST |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Test | Nominal <br> wall height <br> $(\mathbf{m})$ | Wall <br> thickness <br> $(\mathrm{m})$ | Time to <br> collapse <br> $(\mathbf{m i n})$ | Deflection <br> to failure <br> $(\mathbf{m m})$ |
| LB25A | 3.0 | 0.09 | 27 | 78 |
| LB25B | 3.0 | 0.09 | 31 | 81 |
| LB25C | 3.0 | 0.09 | 34 | 88 |
| LB25D | 3.0 | 0.09 | 29 | 81 |
| LB25E | 3.0 | 0.09 | 35 | 97 |
| LB25F | 3.0 | 0.09 | 39 | 106 |
| LB26A | 2.4 | 0.09 | 191 | 64 |
| LB26B | 2.4 | 0.09 | $\mathbf{1 6 4}$ | 73 |
| LB26C | 2.4 | 0.09 | $\mathbf{1 3 6}$ | 73 |
| LB26D | 2.4 | 0.09 | 104 | 75 |
| LB26E | 2.4 | 0.09 | $\mathbf{1 3 1}$ | 80 |
| LB26F | 2.4 | 0.09 | 171 | 93 |
| LB28 | 2.1 | 0.09 | 220 | 66 |
| LB29 | 2.7 | 0.09 | 65 | 79 |

The specimens above were taken from reference [4]. They have all been subjected to a standard fire test and are laterally restraint at the top and bottom ends of the wall. Tests LB25 and LB26 are loaded tests with applied loads of 125, 100, 75, 50,25 , and 17.4 percent of their permissible loads for specimens A to $\mathbf{F}$ respectively. The predicted times for failure in accordance with the limits defined in page 11 are listed in Table 4.

Table 4. Summary of predicted results


Note: n.r. means critical deflection limit was not reached.
The failure times from the loaded tests show a great deal of scatter within each loaded test group, The LB25 tests failed due to excessive deflection between 27 and 39 minutes and the LB26 tests failed much later due to thermal degradation at times ranging from 2 to 3 hours.

The model predicted a deflection failure time of 28 minutes for the LB25 tests. For the other tests, the model crudely predicted failure due to thermal degradation to occur at 106 minutes. Insulation failure at the unexposed side was predicted to occur at 48 minutes.

## VALIDATION OF CONCRETE BARRIERS

Concrete barrier elements in fire are strongly dependent upon its thermal performance during exposure to fire. In particular, the capacity of the element depends upon the reduced strength of the concrete at elevated temperatures and the thermal protection provided to the embedded steel reinforcement.
The thermal predictions of the model have been compared against two published test results:

1. United Kingdom Institute of Structural Engineers (WISE), "Design and Detailing of Concrete Structures for Fire Resistance"
2. Lie, T. T. and Lin, T.D., "Fire Performance of Reinforced Concrete Columns", Fire Safety: Science and Engineering, ASTM STP 882, T-Z. Harmathy, Ed., American Society for Testing and Materials, Philadelphia, 1985, pp. 176-205.
These tests exposed the elements in a furnace subjected to a standard fire timetemperature relationship. The comparisons are made against temperature measurements taken within the element at various distances from the exposed surface of the element

The results from Ref. 1 above are for a 120 mm concrete slab and the results from Ref. 2 are for a $500 \times 500 \mathrm{~mm}$ concrete column, using default concrete material properties given in Appendix B. Comparisons shown in Figure 3 and Figure 4 indicate that the model predictions are generally conservative except at cover depths of 80 mm or more. The results with $5 \%$ moisture content appear to provide closer predictions at smaller cover depths.
The predictions are also relatively sensitive to the amount of moisture due to the relatively gentle slope of the temperature time curve, i.e. a relatively large change in exposure time is required to affect a correspondingly small change in temperature.

The reasons for the variation in temperature predictions are not clearly understood. Considering that the heat transfer model has been validated against a one dimensional analytical solution (Appendix E), it is suspected that the errors would arise from the input values and thermal related phenomena (e.g. moisture migration) in the concrete material. Due to the variability in material and its composition, the thermal properties of concrete are therefore inherently more variable and shows stronger dependence on temperature and moisture content.

figure 3. Comparison with UKISE results

figure 4. Comparison with Lie and LiN'S results

## VALIDATION OF STEEL BEAM AND STEEL COLUMN MODELS

The model predictions have been compared against the test results reported in:

1. Proe, D.J., "Ultimate Strength of Simply-Supported Composite Beams in Fire", BHP Melb. Res. Lab. Rep. No. MRL/PS69/89/007, December 1989.
2. Bennetts, I.D., Proe, D.J. and Thomas, I.R., "Simulation of the fire testing of structural elements by calculation - thermal response", Steel Construction, Vol. 19 No. 3, Nov. 1985, AISC.
Details of the test specimens are summarized in Table 5.
Table 5. TEST SPECIMEN DETAILS

| Test | Section | Element | Exposure | Insulation <br> thickness <br> mm | $k_{g n}$ <br> $\mathrm{~m}^{2} / \mathrm{t}$ | Report |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| BFT-211 | 200UB25 | Steel | Beam | 3 | sides | 31 | 30.8 | 1 |
| BFT-213 | 200UB25 | Steel | Beam | 3 | sides | 66 | 30.8 | 1 |
| BFT-40 | 150UC30 | Steel | Column | 4 | sides | 50 | 20.7 | 2 |
| BFT-41 | 310UC283 | Steel | Column | 4 | sides | 19 | 4.9 | 2 |

The beams support a concrete slab and are protected on three sides with sprayed insulation material The columns are protected on all sides with boarded material. The specimens have all been subjected to the standard fire test. Results of the model are compared against experimental results in Figure 5 for steel beams and Figure 6 for steel columns. Solid lines in the figures represent model predictions whilst markers represent test points. The model is first run assuming no moisture in the insulation material (Model runs) and a second run with $10 \%$ moisture (ModelW runs). From both figures, it can be seen that the model gives reasonably good predictions. It is also apparent in Figure 6 that the insulation material for test BFT-41 had little or no moisture.


FIGURE 5. STEEL BEAM TEMPERATURES


FIGURE 6. STEEL COLUMN TEMPERATURES.

## VALIDATIONOFSTEEL DUCT Model

Figure 7 shows the temperature distribution within the insulation layer of the steel duct. Tg is the gas temperature and Tl to T 10 are the predicted temperatures of each slice of the insulation with Tl being the exposed surface temperature and T 10 being the unexposed surface temperature which is also taken as the steel sheeting temperature.
The properties of the insulation material are taken from test BFT-213 (see above) which has a 66 mm sprayed on insulation material. Because the exposed surface area to mass ratio of the sheeting $(=0.127 \mathrm{~m} 2 \mathrm{~kg})$ is much larger than the steel beam $(=0.0308 \mathrm{~m} / \mathrm{kg}$ for 200UB25), the sheeting temperature can therefore be expected to be higher than the steel beam temperature for the same exposed fire conditions. This is observed when comparing T10 in Figure 7 with BFT213Test(66) in Figure 5. However, no known unrestricted publications on results for insulated steel ducts were available for making a better comparison. If a failure temperature of the steel sheeting is taken as $1000 \mathrm{~K}\left(-727{ }_{\mathrm{o}} \mathrm{C}\right)$, then the duct in this case would be approaching its failure temperature after 180 mins .


FIGURE 7. STEEL DUCT INSULATION TEMPERATURES

G11 APPENDIX D. BSPREAD - BARRIER SPREAD PROGRAM

## APPENDIX D. BSPREAD - BARRIER SPREAD PROGRAM

## Description

BSpread is a computer program for determining the times at which barrier type elements of construction in buildings may fail, as they are exposed to a fire prescribed as a series of time-temperature points. Failure of a barrier enables fire to spread beyond the location of the barrier. BSpread is written in Lahey's Fortran 90 and requires a 32-bit DOS-based environment to run, such as a DOS shell in Windows 95. It has not been tested in any other environment.

## General Usage

The spread of fire out of an enclosure may occur either via openings which preexist (design or non-design openings) in the boundaries of the enclosure (e.g. open door/window, large penetrations in walls/floor) or via the breakdown of barriers such that large openings result enabling the fire to spread through the barrier. Obviously, spread via pre-existing openings would occur very much earlier than spread via barriers which failed. The use of BSpread is therefore limited to assessing the routes of fire spread to spaces which have been protected by the barriers and in which spread had not occurred via openings. BSpread does not account for the presence of pre-existing openings which may enable fire to spread prior to the failure of barriers.

BSpread also assesses the performance of structural (non-barrier type) elements of construction which certain barrier elements may depend upon in order for it to remain in place. If the extent of the structural role of these elements and its association with the dependent barrier elements are known, then the performance of the structurally dependent barriers can be assessed.

## Running BSPread

Prior to running BSpread, an input data file and two associated data files must be prepared beforehand. These are detailed in the sections which follow.
Upon running BSpread (refer operating system manual for instructions), the user will be prompted to enter the data filename. The data filename without the file extension is required. The program assumes a '.dat' file extension for the input data file and creates an output file with a '.out' file extension.

## Input Data Documentation

The input data file contains the information to be used by the program and can be created using any suitable text editor. The program consistently assumes units of meter, Kelvin, seconds, kilogram, and Newton. The format of the input data is as follows:

## General

Line 1: RunTitle
where RunTitle
is the title of the run ( $\leq 80$ characters, enclosed in quotes)
Line 2: tInc,tEnd
where tInc
tEnd
is the time at which the modelling of the effects of fire on the barriers end (s)

Fire Data
Line 3: FireFile
where FireFile
is the name of the data file containing the timetemperature values of the fire enclosure.
e.g. c:\dos\firelFireltest.da1

Line 4: icTm,icTp,xfTm,xfTp
where icTm is the column no for Time (1 or 2)
$i c T p \quad$ is the column no for Gas Temperature (2 or 3)
xfTm is a multiplier to convert Time to seconds
( 1.0 if Time is already in seconds, 60.0 to convert Time from minutes to seconds, 3600.0 to convert Time from hours to seconds)
$x f T p \quad$ is the offset to convert ${ }^{\circ} \mathrm{C}$ to K ( 0.0 if Gas Temperature is already in K or 273.15 if Gas Temperature is in ${ }^{\circ} \mathrm{C}$ )

Common Properties
Line 5: PropFile where PropFile is the name of the data file containing thermal material properties for concrete, steel and plasterboard (see Data format for PropFile).
Line 6: TSpall,TInsFail,rhoConc, wConc
where TSpall is the temperature at which the concrete spalls. If spalling is not modelled, enter a very large number ( K ). TInsFail is the critical temperature on the unexposed side of a boundary element surface which upon exceeding constitutes an insulation failure of the element (K).
rhoConc is the concrete density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
$w$ Conc $\quad$ is the concrete moisture content $(\mathrm{kg} / \mathrm{kg})$

## Steel Stud Walls

Line 7: thwe,thwu,swksm
where thwe is the thickness of the plasterboard skin exposed to the fire (m)
thwu is the thickness of the plasterboard skin on the unexposed side (m)
swksm is the exposed surface area per unit mass of the steel studs ( $\mathrm{m}^{2} / \mathrm{kg}$ )
Line 8: pbMoist,pbDryDensity
where $p b$ Moist $\quad$ is the ratio of moisture content in the plasterboard
(=water mass/dry unit mass, $\mathrm{kg} / \mathrm{kg}$ )
pbDryDensity is the dry density of the plasterboard $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
Line 9: TFSS,TFPW
where TFSS
TFPW
is the temperature corresponding to structural adequacy failure of the steel studs (K) is the temperature corresponding to integrity failure of the plasterboard skin (K)

MASONRY WALL
Line 10: thMW,htMW,rhoMasn
where $t h M W \quad$ is the thickness of the masonry wall ( m ) $h t M W \quad$ is the effective height of the masonry wall (m) rhoMasn is the density of masonry wall ( $\mathrm{kg} / \mathrm{m}^{3}$ )

Concrete Wall
Line 11: thCW,ecCW,cwFc
where $t h C W$
ecCW
$c w^{F} c$
Line 2: ib,cwLoad where ib
cwLoad
is the thickness of the concrete wall (m), is the eccentricity of the vertically applied load off the centroid os the concrete wall (m) is the characteristic value of the 28 day compressive strength of the concretc wail ( Pa )
is an indicator flag for a braced concrete wall ( $0=$ False, $1=$-rue) is the lincar line load on the wall $(\mathrm{N} / \mathrm{m})$

CONCRETE BEAM/Slab
Line 13: $c b B, c b \ddot{\mathrm{D}}, c b C p, c b \overline{C n}, c b A p, c b \wedge n, c \bar{b} F y r, c b F c$
where $c b B \quad$ is the width of the concrete beam (m) $s b D \quad$ is the devth of the concrete beam (m)
$c b C p \quad$ is the cover depth of the centroid of the positive steel reinforcement measured from the beam soffit (m) $c b C n \quad$ is the cover depth of the centroid of the negative steel reinforcement measured from the top of the beam surface (m)
cbAp is the cross-sectional area of the positive steel reinforcement ( $\mathrm{m}^{2} / \mathrm{m}$ )
$c b A n \quad$ is the cross-sectional area of the negative steel reinforcement ( $\mathrm{m}^{2} / \mathrm{m}$ )
$c b F y r \quad$ is the yicld strength of the reinforcing steel ( Pa )
$c b F c \quad$ is the characteristic value of the 28 day compressive strength of the concrete beam ( Pa )

Line 14: cbIoad,cbSpan
where cbLoad
is the miformly distributed load on the concrete beam (N/m)
$c b S p a n \quad$ is the span of the concrete beam (m)

## CONCRETE COLUMN

-ine 15: $c c B i, c c D i, c c C p, c c A p, c c F y r, c c F c$
where $c c B i \quad$ is the width $\mathrm{o}^{\text {? }}$ the concrete column (m)


## Steel Columns

Line 19: scksm,scgG,scgQ,scG,scQ,scPhi
where scksm is the exposed surface area to mass ratio - 4 sided
( $\mathrm{m}^{2} / \mathrm{kg}$ )
$\operatorname{scg} G \quad$ is the partial load factor for dead load in fire
$\operatorname{scg} Q \quad$ is the partial load factor for live load in fire
$s c G \quad$ is the applied design dead load ( N )
$s c Q \quad$ is the applied design live load ( N )
$s c P h i \quad$ is the ratio of the actual to nominal steel column strength
Line 20: scith,scirhod,sciw,scicp,scikp
where scith is the thickness of insulation (m)
scirhod $\quad$ is the dry density of the insulation material $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$

| sciw | is the moisture content ratio in the insulation material |
| :--- | :--- |
| (=water mass $/ \mathrm{dry}$ unit mass, $\mathrm{kg} / \mathrm{kg}$ ) |  |
| scicp | is the specific heat of the insulation material $(\mathrm{J} / \mathrm{kg} / \mathrm{K})$ |
| scikp | is the thermal conductivity of the insulation material |
|  | $(\mathrm{W} / \mathrm{m} / \mathrm{K})$ |

## METAL SHAFTS and DUCTS

Line 21: sdith,sdirho,sdicp,sdikp,sdiw
where sdith

| sdirho | is the thickness of insulation $(\mathrm{m})$ <br> sdiw |
| :--- | :--- |
| is the dry density of the insulation material $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$  <br> is the moisture content ratio in the insulation material  <br> sdicp (=water mass/dry unit mass, $\mathrm{kg} / \mathrm{kg})$ |  |
| sdikp | is the specific heat of the insulation material $(\mathrm{J} / \mathrm{kg} / \mathrm{K})$ <br> is the thermal conductivity of the insulation material <br> $(\mathrm{W} / \mathrm{m} / \mathrm{K})$ |

Line 22: TsdCr,sdth,sdrho
where $\mathrm{Ts} d \mathrm{Cr}$
sdth is the thickness of the steel sheeting (m)
sdrho $\quad$ is the density of the steel sheeting $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$

## Sample Data File

A sample listing of a datafile in accordance with the layout described above is as follows:

```
"Sample run"
1203600
StdFire.lis
1 2 1.0 273.15
LieProp.lis
1473.0 500.0 2400.0 0.05
0.010 0.010 0.554
0.20 600.0
1000.0 1000.0
0.090 3.0 2400
0.20 0.01 32.0e6
1 0.83e6
1.2 0.35 0.055 0.055 0.0028 0.0032 400.0e6 25.0e6
55.0e3 8.0
0.6 0.6 0.055 0.0033 400.0e6 32.0e6
1.1 0.4 2.8e6 1.2e6 1.0
0.0181 1.1 0.4 26.4e3 9.6e3 1.0
0.017 360.0 0.10 861.0 0.105
0.0103 1.1 0.4 2640e3 960e3 1.0
0.012 360.0 0.10 861.0 0.105
0.066 360.0 0.10 861.0 0.105
1000.0 0.001 7850.0
```


## Data format for FireFile

FireFile contains the time-temperature values and is usually the output file of a fire model. The format of the data must be such that both the time and temperature columns must be in the first three data columns of the file. There must not be any text preceding the data.

The following is a listing of a standard fire time-temperature data file.

| 0 | 20 |
| :--- | :--- |
| 3 | 70 |
| 8 | 129 |
| 15 | 185 |
| 25 | 240 |
| 40 | 297 |
| 60 | 349 |
| 90 | 404 |
| 120 | 445 |
| 180 | 502 |
| 250 | 550 |
| 360 | 603 |
| 500 | 651 |
| 720 | 705 |
| 960 | 748 |
| 1440 | 809 |
| 1920 | 851 |
| 2600 | 897 |
| 3800 | 953 |
| 5700 | 1014 |
| 7500 | 1055 |
| 10500 | 1106 |
| 14000 | 1149 |
| 18000 | 1186 |
| 22000 | 1216 |

## Data format for PropFile

PropFile contains the thermal conductivity and specific heat values as a function of temperature for concrete, steel and plasterboard materials respectively. The input data layout for each material is generally structured as follows:
Line 1: $n_{k}, n_{c}$
where $n_{k} \quad$ is the number of thermal conductivity points $n_{c} \quad$ is the number of specific heat points

Lines 2 to $1+n_{k}: T_{i}, k_{i}$
where $T_{i} \quad$ is the temperature of point $i(\mathrm{~K})$
$k_{i} \quad$ is the thermal conductivity of the material at temperature $T_{\mathrm{i}}(\mathrm{W} / \mathrm{m} / \mathrm{K})$
Lines $2+n_{k}$ to $1+n_{k}+n_{c}: T_{i}, c_{i}$
where $T_{i} \quad$ is the temperature of point $i(\mathrm{~K})$
$c_{i} \quad$ is the specific heat of the material at temperature $T_{i}$ ( $\mathrm{J} / \mathrm{kg} / \mathrm{K}$ )
Line $2+n_{k}+n_{c}$ : cteMW,doWmax,TcrMW,thdgf
where cteMW is the thermal expansion coefficient for bricks
doWmax is the maximum ratio of lateral deflection to wall width
$\operatorname{Tcr} M W \quad$ is the critical temperature for failure due to thermal degradation (K)
thdg $f \quad$ is the thermal degradation factor for deflection

```
e.g.
3}
293.0 1.78
388.0 1.28
1273.0 0.66
273.0 1042.0
1273.0 1042.0
```

```
3 6
273.0 60.0
1073.0 27.0
1273.0 27.0
273.0 546.0
448.0 546.0
790.0 646.0
1053.0 737.0
1210.0 1019.0
1375.0 1019.0
54
273.0 0.24
348.0 0.24
493.0 0.12
573.0 0.13
1273.0 0.25
273.0 1700.0
375.0 1700.0
400.0 600.0
1273.0 600.0
6e-6 0.9 973.0 1.6
```


## Output

The output is in two parts. The first part is reprinted information of the input data which was read by the program. The second part is the results section.

## Results Section

The results section is a summary of the three failure mechanisms of the barrier performance over the time exposed to the fire. The codes used in the results section are as follows:

```
t = time (s)
T}=\mathrm{ temperature (}\mp@subsup{}{}{\circ}\textrm{C}
SSW = Steel Stud Wall
CCW = Concrete Wall
CCB = Concrete Beam/Slab
CCC = Concrete Column
STB = Structural Steel Beam
STC = Structural Steel Column
MTS = Metal Steel Shaft
AIT = Failures by Structural Adequacy, Integrity and Insulation
 (Temperature) respectively.
F = Occurrence of failure corresponding to the mode represented by its
 location beneath the 'AIT' column.
r....NANEDEEGUN
 Using the sample dat\overline{a}}\mathrm{ - file shown
 program is showa below:
 BSpread: Barricor Spread Program
 Written by leong Poon, BHF Research, August 1997
 INPUT information
 DATA file: Gample
 Run Title: Sample run
```

```
Modelling times
Time increment (s): }120
End simulation (s): 3600
Fire data
Fire data file: StdFire.lis
Col no for Time: 1
Col no for Temp: 2
Multiplier to convert time to secs: 1.0
Offset to convert C to K: 273.15
Common properties
Thermal properties data file: LieProp.lis
Concrete spalling temperature (K): 1473.0
Temperature for Insulation Failure Criterion (K): 500.0
Concrete density (kg/m3): 2400.0
Concrete moisture (kg/kg): 0.0500
Steel Stud Wall
Thickness of exposed plasterboard skin (m): 0.0160
Thickness of unexposed plasterboard skin (m): 0.0160
Exposed surface area to unit mass of steel stud (\(\mathrm{m} 2 / \mathrm{kg}\)) : 0.3000
Plasterboard moisture content: 0.2000
Plasterboard dry density (\(\mathrm{kg} / \mathrm{m} 3\)): 850.0
Temperature for Structural Adequacy Failure of Steel Studs (K): 1000.0
Temperature for Integrity Failure of plasterboard (K): 1000.0
Masonry Wall
Thickness (m): 0.0900
Height (m): 3.0
Density (kg/m3): 2400.0
Concrete Wall
Thickness (m): 0.0800
Vertical load eccentricity (m): 0.0100
Concrete strength (Pa): 0.320E+08
Braced wall flag (F=False,T=True): T
Line load (\(\mathrm{N} / \mathrm{m}\)): 0.573E+06
Concrete Beam/Slab
Width (m): 1.0000
Depth (m): 0.0800
Positive Reo Cover depth from bot surface (m): 0.0200
Negative Reo Cover depth from top surface (m): 0.0200
Area of Positive steel reo (m2): 0.000757
Area of Negative steel reo (m2): 0.000757
Yield strength of reo (Pa) : \(0.450 \mathrm{E}+09\)
Concrete strength (Pa): 0.250E+08
Uniformly distributed load (N/m): 0.633E+04
Span (m): 5.0000
Concrete Column
Width (m): 0.6000
Depth (m): 0.6000
Reo Cover depth from exposed surface (m): 0.0300
Area of steel reo (m2): 0.003300
Yield strength of reo (Pa): 0.400E+09
Concrete strength (Pa): 0.320E+08
Partial dead load factor: 1.100
Partial live load factor: 0.400
Design dead load (N): \(0.225 \mathrm{E}+07\)
Design live load (N): 0.160E+07
Ratio of actual to nominal strength: 1.000
Steel Beam
3-sided exposed area to mass ratio (m2/kg): 0.0181
Partial dead load factor: 1.100
Partial live load factor: 0.400
Design dead load (N): \(0.240 \mathrm{E}+05\)
Design live load (N): 0.240E+05
Ratio of actual to nominal strength: 1.000
```

```
Insulation thickness (m): 0.0120
Insulation dry density (kg/m3): 305.0
Insulation moisture content ratio: 0.1000
Insulation specific heat: 900.0
Insulation thermal conductivity: 0.1250
Steel Column
4-sided exposed area to mass ratio (m2/kg): 0.0103
Partial dead load factor: 1.100
Partial live load factor: 0.400
Design dead load (N): 0.288E+06
Design live load (N): 0.144E+06
Ratio of actual to nominal strength: 1.000
Insulation thickness (m): 0.0130
Insulation dry density (kg/m3): 305.0
Insulation moisture content ratio: 0.1000
Insulation specific heat: 900.0
Insulation thermal conductivity: 0.1250
Metal Shaft/Duct
Insulation thickness (m): 0.0440
Insulation dry density (kg/m3): 305.0
Insulation moisture content ratio: 0.1000
Insulation specific heat: 900.0
Insulation thermal conductivity: 0.1250
Temperature for Structural Adequacy Failure of Steel Studs (K): 1000.0
Thickness of steel sheeting (m): 0.0010
Density of steel sheeting (kg/m3): 7850.0
```

RESULTS

| t | T | SSW | MSW | CCW | CCB | CCC | STB | STC | MTS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (s) | (C) | AIT | AIT | AIT | AIT | AIT | AIT |  | AIT |
| 120. | 445. | . . |  |  |  |  |  |  |  |
| 240. | 543. | . |  |  |  |  |  |  |  |
| 360. | 603. | . . |  |  |  |  |  |  |  |
| 480. | 644. | . . |  |  |  |  |  |  |  |
| 600. | 676. | . . |  |  |  |  |  |  |  |
| 720. | 705. | . . |  |  |  |  |  |  |  |
| 840. | 726. | . . |  |  |  |  |  |  |  |
| 960. | 748. | . |  |  |  |  |  |  |  |
| 1080. | 763. | . |  |  |  |  |  |  |  |
| 1200. | 778. | . |  |  |  |  |  |  |  |
| 1320. | 794. | . |  |  |  |  |  |  |  |
| 1440. | 809. | . . |  |  |  |  |  |  |  |
| 1560. | 820. | . |  |  |  |  |  |  |  |
| 1680. | 830. | . |  |  |  |  |  |  |  |
| 1800. | 840. | . |  |  |  |  |  |  |  |
| 1920. | 851. | . . |  |  |  |  |  |  |  |
| 2040. | 859. | . . |  |  |  |  |  |  |  |
| 2160. | 867. | . |  |  |  |  |  |  |  |
| 2280. | 875. | . |  |  |  |  |  |  |  |
| 2400. | 883. | . . |  |  |  |  |  |  |  |
| 2520. | 892. | . . |  |  |  |  |  |  |  |
| 2640. | 899. | . | FFF. |  |  |  |  |  |  |
| 2760. | 904. | . | FFF. |  |  |  |  |  |  |
| 2880. | 910. | . F | FFF. |  |  |  |  |  |  |
| 3000. | 916. | . | FFF. |  |  |  |  |  |  |
| 3120. | 921. | . | FFF. |  |  |  |  |  |  |
| 3240. | 927. |  | FFF. |  |  |  |  |  |  |
| 3360. | 932. |  | FFF. |  |  |  |  |  |  |
| 3480. | 938. | . FFF. F | FFF. |  |  |  |  |  |  |
| 3600. | 944. | . FFF. F | FFF. |  |  |  |  |  |  |

## G12 APPENDIX E. ONE DIMENSIONAL HEAT TRANSFER

This appendix describes a one dimensional heat transfer methodology for calculating the temperature of a barrier material exposed to a hot gas medium.

### 12.1.1.1 Heat Transfer Between the Gas Medium and the Barrier Surface

The transfer of heat energy between the gas medium and the barrier surface exposed to the gas is given by

$$
\begin{equation*}
q_{i}=h\left(T_{g}-T_{s}\right) \tag{E1}
\end{equation*}
$$

where
$q_{i}=$ heat flux to barrier surface, $\mathrm{W} / \mathrm{m}^{2}$;
$h=$ coefficient of heat transfer, W $/ \mathrm{m}^{2}$.K;
$T_{g}=$ temperature of the gas medium, K ;
$T_{s}=$ temperature of the barrier surface, K .
The coefficient of heat transfer consists of the convective component and the radiative component, i.e.

$$
h=h_{c}+h_{r}
$$

where
$h_{c}=$ convective heat transfer coefficient;
$h_{r}=$ radiative heat transfer coefficient.
The convective heat transfer coefficient may be calculated from the empirical equation [14],

$$
h_{c}=1.313\left|T_{s}-T_{a}\right|^{1 / 3}
$$

where $T_{s}$ is the surface temperature ( K ) and $T_{a}$ is the ambient temperature ( K ). The radiative heat transfer coefficient is given by

$$
h_{r}=\sigma \varepsilon \frac{T_{s}^{4}-T_{a}^{4}}{T_{s}-T_{a}}
$$

### 12.1.1.2 Heat Conduction Within the Barrier

For barriers with a relatively low conductivity, a thermal gradient will exist across the crosssection. The transient changes in temperature within the barrier is solved using a onedimensional finite difference approach. This involves discretizing the barrier cross-section into a number of layers parallel to its surface and solving the conservation equations over a time step period assuming that quasi steady state conditions prevail within that time across the layer. The temperature within the barrier may be assumed to be constant throughout and the heat balance can be expressed as

$$
\begin{equation*}
q_{i}+q_{o}=\rho . c \cdot \Delta x \cdot \Delta T_{s} / \Delta t \tag{E2}
\end{equation*}
$$

where
$q_{i}=$ eqn (E1), between the exposed layer and the fire gases, and
$=k \Delta T / \Delta x$ between the other layers;
$q_{o}=$ eqn (E1), between the unexposed layer and the gases that it is in contact with, and
$=k \Delta T / \Delta x$ between the other layers;
$k=$ thermal conductivity, $\mathrm{W} / \mathrm{m} / \mathrm{K}$;
$\Delta T=$ change in temperature, K ;
$\Delta x=$ layer thickness, m ;
$\rho=$ barrier density, $\mathrm{kg} / \mathrm{m}^{3}$;

$$
\begin{aligned}
c & =\text { specific heat, } \mathrm{J} / \mathrm{kg} / \mathrm{K} ; \\
\Delta t & =\text { time step, } \mathrm{s} .
\end{aligned}
$$

Figure 1 shows a sectional view of a barrier plate subdivided into a number of layers.


Figure 1. Subdivision of a barrier panel
Applying equation (E2) at the exposed layer, node 1,

$$
h\left(T_{g}-T_{1}\right)+k \cdot \Delta T / \Delta x=\rho \cdot c \cdot \Delta x \cdot \Delta T_{\mathrm{s}} / 2 \Delta t
$$

or

$$
h\left(T_{\mathrm{g}}-T_{1}\right)+k\left(T_{2}-T_{1}\right) / \Delta x=\rho . c . \Delta x .\left(T_{1}-T_{1}\right) / 2 \Delta t
$$

The new temperature $T_{I}$ can then be calculated.
Similarly, at the unexposed layer, node 7,

$$
k . \Delta T / \Delta x+h\left(T_{a}-T_{8}\right)=\rho \cdot c \cdot \Delta x \cdot \Delta T_{s} / 2 \Delta t
$$

or

$$
k .\left(T_{7}-T_{8}\right) / \Delta x+h\left(T_{a}-T_{8}\right)=\rho . c . \Delta x .\left(T_{8}^{\prime}-T_{8}\right) / 2 \Delta t
$$

The new temperature $T_{8}^{\prime}$ can then be calculated.
At the intermediate layers, say node 4 ,

$$
k .\left(T_{3}-T_{4}\right) / \Delta x+k .\left(T_{5}-T_{4}\right) / \Delta x=\rho . c . \Delta x .\left(T_{4}^{\prime}-T_{4}\right) / 2 \Delta t
$$

The new temperature $T_{4}^{\prime}$ can then be calculated.

### 12.1.1.3 Validation

To illustrate the accuracy of the method, the results of the finite difference analysis are compared against an analytical solution [1] for the following input data

Thermal conductivity, $k$
Volume specific heat, $\rho c$
Thickness of wall, $D$
Coefficient of heat transfer at the unexposed surface
Initial temperature of wall temperature of ambient air
'Idealized' fire temperature and temperature of exposed surface
0.952
$1.594 \times 10^{6}$
0.2032
16.02

297
$\mathrm{W} / \mathrm{m} \cdot \mathrm{K}$
$\mathrm{J} / \mathrm{m}^{3} \cdot \mathrm{~K}$
m
$\mathrm{W} / \mathrm{m}^{2} \cdot \mathrm{~K}$

K

K

The results are shown in Figure E1 at quarter sections along the wall cross-section.


Figure E1. Comparison of analytical and numerical solutions

### 12.1.1.4 Reference

[1] Harmathy, T.Z., "Fire Safety Design \& Concrete", Longman, Scientific and Technical, 1993.

## BSPREAD RESULTS

The figures in Table G1 are the estimated failure time in seconds for the temperatures and durations shown using BSpread.

The temperature profile for the design fires are the specified (maximum) temperature (Tmax) at the start of the fire with the temperature falling linearly to $500^{\circ} \mathrm{C}$ at the time corresponding to the duration. These temperature profiles are shown in Figure G1.


Figure G1 Temperature-Time Relation ships for the Design Fires Used in Table G1

In Table G1 the duration, in seconds, is given in the column marked t500.
An entry of "Nil" in Table G1 means no failure is predicted.
The remaining columns represent each of the structural and barrier elements considered as follows:

SSW Steel stud wall
MW Masonry wall
CW Concrete wall
CB Concrete beam
CC Concrete column
SB Steel beam
SC Steel column
MSD Insulated steel duct
Examination of Table G1 shows that for each FRL most of the elements fail within a similar time period (generally within $\pm 5$ minutes). This is to be expected and comes about because elements designed to just survive a specific period in the standard fire test are likely to have similar sensitivity to other time-temperature histories.

## Table G1 BSpread Results

FRL $=30$ minutes

| Tmax | 1250 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $t 500$ | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil | 120 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 1200 | 360 | 120 | 840 | 660 | 600 | Nil | Nil | Nil |
|  | 1800 | 300 | 120 | 600 | 540 | 540 | 1080 | 1080 | 600 |
|  | 2400 | 300 | 120 | 540 | 480 | 480 | 960 | 960 | 600 |
|  | 3000 | 300 | 120 | 540 | 480 | 480 | 960 | 960 | 600 |
|  | 3600 | 300 | 120 | 480 | 480 | 480 | 900 | 900 | 540 |
|  | 4200 | 300 | 120 | 300 | 300 | 360 | 900 | 900 | 540 |
|  | 4800 | 300 | 120 | 300 | 300 | 300 | 900 | 900 | 540 |
|  | 5400 | 300 | 120 | 300 | 300 | 300 | 900 | 900 | 540 |
|  | 6000 | 300 | 120 | 300 | 300 | 300 | 900 | 900 | 540 |
|  | 6600 | 300 | 120 | 240 | 240 | 240 | 900 | 900 | 540 |
|  | 7200 | 300 | 120 | 240 | 240 | 240 | 900 | 900 | 540 |
|  | 7800 | 300 | 120 | 240 | 240 | 240 | 900 | 900 | 540 |
|  | 8400 | 300 | 120 | 240 | 240 | 240 | 900 | 900 | 540 |
|  | 9000 | 300 | 120 | 240 | 240 | 240 | 900 | 900 | 540 |
|  | 9600 | 300 | 120 | 240 | 240 | 240 | 900 | 900 | 540 |
|  | 10200 | 300 | 120 | 240 | 240 | 240 | 900 | 900 | 540 |
|  | 10800 | 300 | 120 | 240 | 240 | 240 | 900 | 900 | 540 |
| Tmax | 1200 |  |  |  |  |  |  |  |  |
|  | $t 500$ | SSW | MW | CW |  | CC |  | SC | MSD |
|  | 600 | Nil | 120 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 1200 | 360 | 120 | 1080 | Nil | 840 | Nil | Nil | Nil |
|  | 1800 | 360 | 120 | 660 | 600 | 600 | 1140 | 1140 | 660 |
|  | 2400 | 360 | 120 | 600 | 540 | 540 | 1020 | 1020 | 660 |
|  | 3000 | 360 | 120 | 600 | 540 | 540 | 1020 | 1020 | 600 |
|  | 3600 | 300 | 120 | 540 | 540 | 540 | 960 | 960 | 600 |
|  | 4200 | 300 | 120 | 540 | 540 | 480 | 960 | 960 | 600 |
|  | 4800 | 300 | 120 | 540 | 540 | 480 | 960 | 960 | 600 |
|  | 5400 | 300 | 120 | 540 | 480 | 480 | 960 | 960 | 600 |
|  | 6000 | 300 | 120 | 540 | 480 | 480 | 960 | 960 | 600 |
|  | 6600 | 300 | 120 | 540 | 480 | 480 | 960 | 960 | 600 |
|  | 7200 | 300 | 120 | 540 | 480 | 480 | 900 | 900 | 600 |
|  | 7800 | 300 | 120 | 540 | 480 | 480 | 900 | 900 | 600 |
|  | 8400 | 300 | 120 | 540 | 480 | 480 | 900 | 900 | 540 |
|  | 9000 | 300 | 120 | 540 | 480 | 480 | 900 | 900 | 540 |
|  | 9600 | 300 | 120 | 540 | 480 | 480 | 900 | 900 | 540 |
|  | 10200 | 300 | 120 | 480 | 480 | 480 | 900 | 900 | 540 |
|  | 10800 | 300 | 120 | 480 | 480 | 480 | 900 | 900 | 540 |

$F R L=30$ minutes

| Tmax | 1150 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $t 500$ | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | 360 | 120 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 1800 | 360 | 120 | 780 | 660 | 660 | 1200 | 1200 | 780 |
|  | 2400 | 360 | 120 | 660 | 600 | 600 | 1080 | 1080 | 720 |
|  | 3000 | 360 | 120 | 660 | 600 | 600 | 1080 | 1080 | 660 |
|  | 3600 | 360 | 120 | 600 | 600 | 540 | 1020 | 1020 | 660 |
|  | 4200 | 360 | 120 | 600 | 600 | 540 | 1020 | 1020 | 660 |
|  | 4800 | 360 | 120 | 600 | 540 | 540 | 1020 | 1020 | 660 |
|  | 5400 | 360 | 120 | 600 | 540 | 540 | 1020 | 1020 | 600 |
|  | 6000 | 360 | 120 | 600 | 540 | 540 | 960 | 960 | 600 |
|  | 6600 | 360 | 120 | 600 | 540 | 540 | 960 | 960 | 600 |
|  | 7200 | 360 | 120 | 600 | 540 | 540 | 960 | 960 | 600 |
|  | 7800 | 360 | 120 | 600 | 540 | 540 | 960 | 960 | 600 |
|  | 8400 | 360 | 120 | 600 | 540 | 540 | 960 | 960 | 600 |
|  | 9000 | 360 | 120 | 540 | 540 | 540 | 960 | 960 | 600 |
|  | 9600 | 360 | 120 | 540 | 540 | 540 | 960 | 960 | 600 |
|  | 10200 | 360 | 120 | 540 | 540 | 540 | 960 | 960 | 600 |
|  | 10800 | 360 | 120 | 540 | 540 | 540 | 960 | 960 | 600 |
| Tmax | 1100 |  |  |  |  |  |  |  |  |
|  | $t 500$ | SSW | MW |  |  | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil | 180 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 1800 | 420 | 180 | 900 | 780 | 780 | 1320 | 1320 | 900 |
|  | 2400 | 360 | 180 | 780 | 720 | 660 | 1200 | 1200 | 780 |
|  | 3000 | 360 | 120 | 720 | 660 | 660 | 1140 | 1140 | 720 |
|  | 3600 | 360 | 120 | 720 | 660 | 660 | 1080 | 1080 | 720 |
|  | 4200 | 360 | 120 | 660 | 660 | 600 | 1080 | 1080 | 720 |
|  | 4800 | 360 | 120 | 660 | 600 | 600 | 1080 | 1080 | 660 |
|  | 5400 | 360 | 120 | 660 | 600 | 600 | 1020 | 1020 | 660 |
|  | 6000 | 360 | 120 | 660 | 600 | 600 | 1020 | 1020 | 660 |
|  | 6600 | 360 | 120 | 660 | 600 | 600 | 1020 | 1020 | 660 |
|  | 7200 | 360 | 120 | 660 | 600 | 600 | 1020 | 1020 | 660 |
|  | 7800 | 360 | 120 | 660 | 600 | 600 | 1020 | 1020 | 660 |
|  | 8400 | 360 | 120 | 660 | 600 | 600 | 1020 | 1020 | 660 |
|  | 9000 | 360 | 120 | 660 | 600 | 600 | 1020 | 1020 | 660 |
|  | 9600 | 360 | 120 | 660 | 600 | 600 | 1020 | 1020 | 660 |
|  | 10200 | 360 | 120 | 660 | 600 | 600 | 1020 | 1020 | 660 |
|  | 10800 | 360 | 120 | 600 | 600 | 600 | 1020 | 1020 | 660 |

$F R L=30$ minutes

| Tmax | 1050 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $t 500$ | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil | 240 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 1800 | Nil | 180 | 1080 | 1200 | Nil | 1440 | 1440 | Nil |
|  | 2400 | 420 | 180 | 900 | 840 | 840 | 1260 | 1260 | 900 |
|  | 3000 | 420 | 180 | 840 | 780 | 780 | 1200 | 1200 | 840 |
|  | 3600 | 420 | 180 | 780 | 720 | 720 | 1140 | 1140 | 780 |
|  | 4200 | 420 | 180 | 780 | 720 | 720 | 1140 | 1140 | 780 |
|  | 4800 | 420 | 180 | 780 | 720 | 720 | 1140 | 1140 | 780 |
|  | 5400 | 420 | 180 | 780 | 720 | 660 | 1140 | 1140 | 720 |
|  | 6000 | 360 | 180 | 720 | 720 | 660 | 1080 | 1080 | 720 |
|  | 6600 | 360 | 180 | 720 | 660 | 660 | 1080 | 1080 | 720 |
|  | 7200 | 360 | 180 | 720 | 660 | 660 | 1080 | 1080 | 720 |
|  | 7800 | 360 | 180 | 720 | 660 | 660 | 1080 | 1080 | 720 |
|  | 8400 | 360 | 180 | 720 | 660 | 660 | 1080 | 1080 | 720 |
|  | 9000 | 360 | 180 | 720 | 660 | 660 | 1080 | 1080 | 720 |
|  | 9600 | 360 | 180 | 720 | 660 | 660 | 1080 | 1080 | 720 |
|  | 10200 | 360 | 180 | 720 | 660 | 660 | 1080 | 1080 | 720 |
|  | 10800 | 360 | 180 | 720 | 660 | 660 | 1080 | 1080 | 720 |
| Tmax | 1000 |  |  |  |  |  |  |  |  |
|  | $t 500$ | SSW | MW |  |  | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil | 300 | 1380 | Nil | Nil | 1620 | 1620 | Nil |
|  | 2400 | 1560 | 240 | 1080 | 1080 | 1080 | 1380 | 1380 | 1080 |
|  | 3000 | 1440 | 240 | 1020 | 900 | 900 | 1260 | 1260 | 960 |
|  | 3600 | 1380 | 240 | 960 | 900 | 840 | 1260 | 1260 | 900 |
|  | 4200 | 480 | 240 | 900 | 840 | 840 | 1200 | 1200 | 840 |
|  | 4800 | 480 | 240 | 900 | 840 | 780 | 1200 | 1200 | 840 |
|  | 5400 | 420 | 240 | 840 | 780 | 780 | 1200 | 1200 | 840 |
|  | 6000 | 420 | 240 | 840 | 780 | 780 | 1200 | 1200 | 840 |
|  | 6600 | 420 | 240 | 840 | 780 | 780 | 1200 | 1200 | 840 |
|  | 7200 | 420 | 240 | 840 | 780 | 780 | 1140 | 1140 | 840 |
|  | 7800 | 420 | 240 | 840 | 780 | 780 | 1140 | 1140 | 780 |
|  | 8400 | 420 | 240 | 840 | 780 | 780 | 1140 | 1140 | 780 |
|  | 9000 | 420 | 240 | 840 | 780 | 780 | 1140 | 1140 | 780 |
|  | 9600 | 420 | 240 | 840 | 780 | 780 | 1140 | 1140 | 780 |
|  | 10200 | 420 | 240 | 840 | 780 | 780 | 1140 | 1140 | 780 |
|  | 10800 | 420 | 240 | 840 | 780 | 720 | 1140 | 1140 | 780 |

FRL $=30$ minutes

| Tmax | 950 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil | Nil | 1560 | Nil | Nil | Nil | Nil | Nil |
|  | 2400 | Nil | 480 | 1260 | Nil | Nil | 1500 | 1500 | Nil |
|  | 3000 | 1560 | 420 | 1140 | 1200 | 1200 | 1380 | 1380 | 1200 |
|  | 3600 | 1500 | 360 | 1080 | 1080 | 1080 | 1320 | 1320 | 1080 |
|  | 4200 | 1440 | 360 | 1080 | 1020 | 1020 | 1320 | 1320 | 1020 |
|  | 4800 | 1380 | 360 | 1020 | 960 | 960 | 1320 | 1320 | 960 |
|  | 5400 | 1380 | 300 | 1020 | 960 | 960 | 1260 | 1260 | 960 |
|  | 6000 | 1380 | 300 | 1020 | 960 | 960 | 1260 | 1260 | 960 |
|  | 6600 | 1380 | 300 | 960 | 960 | 960 | 1260 | 1260 | 960 |
|  | 7200 | 1320 | 300 | 960 | 900 | 900 | 1260 | 1260 | 900 |
|  | 7800 | 1320 | 300 | 960 | 900 | 900 | 1260 | 1260 | 900 |
|  | 8400 | 1320 | 300 | 960 | 900 | 900 | 1260 | 1260 | 900 |
|  | 9000 | 1320 | 300 | 960 | 900 | 900 | 1260 | 1260 | 900 |
|  | 9600 | 1320 | 300 | 960 | 900 | 900 | 1200 | 1200 | 900 |
|  | 10200 | 1320 | 300 | 960 | 900 | 900 | 1200 | 1200 | 900 |
|  | 10800 | 1320 | 300 | 960 | 900 | 900 | 1200 | 1200 | 900 |
| Tmax | 900 |  |  |  |  |  |  |  |  |
|  | $t 500$ | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil | Nil | 1740 | Nil | Nil | Nil | Nil | Nil |
|  | 2400 | Nil | Nil | 1560 | Nil | Nil | 1620 | 1620 | Nil |
|  | 3000 | 1740 | Nil | 1380 | Nil | Nil | 1500 | 1500 | Nil |
|  | 3600 | 1620 | Nil | 1260 | 1440 | 1500 | 1440 | 1440 | Nil |
|  | 4200 | 1560 | Nil | 1260 | 1320 | 1320 | 1440 | 1440 | 1260 |
|  | 4800 | 1560 | 600 | 1200 | 1260 | 1260 | 1380 | 1380 | 1200 |
|  | 5400 | 1500 | 540 | 1200 | 1200 | 1200 | 1380 | 1380 | 1140 |
|  | 6000 | 1500 | 540 | 1140 | 1140 | 1140 | 1380 | 1380 | 1140 |
|  | 6600 | 1500 | 540 | 1140 | 1140 | 1140 | 1380 | 1380 | 1080 |
|  | 7200 | 1500 | 480 | 1140 | 1140 | 1140 | 1320 | 1320 | 1080 |
|  | 7800 | 1440 | 480 | 1140 | 1080 | 1140 | 1320 | 1320 | 1080 |
|  | 8400 | 1440 | 480 | 1140 | 1080 | 1080 | 1320 | 1320 | 1080 |
|  | 9000 | 1440 | 480 | 1080 | 1080 | 1080 | 1320 | 1320 | 1080 |
|  | 9600 | 1440 | 480 | 1080 | 1080 | 1080 | 1320 | 1320 | 1080 |
|  | 10200 | 1440 | 480 | 1080 | 1080 | 1080 | 1320 | 1320 | 1020 |
|  | 10800 | 1440 | 480 | 1080 | 1080 | 1080 | 1320 | 1320 | 1020 |

FRL $=30$ minutes

| Tmax | 850 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil | Nil | 1740 | Nil | Nil | 1860 | 1860 | Nil |
|  | 3000 | Nil | Nil | 1680 | Nil | Nil | 1680 | 1680 | Nil |
|  | 3600 | 1800 | Nil | 1560 | Nil | Nil | 1620 | 1620 | Nil |
|  | 4200 | 1800 | Nil | 1440 | 1860 | 2100 | 1560 | 1560 | Nil |
|  | 4800 | 1740 | Nil | 1440 | 1680 | 1740 | 1500 | 1500 | Nil |
|  | 5400 | 1680 | 4800 | 1380 | 1560 | 1620 | 1500 | 1500 | 1680 |
|  | 6000 | 1680 | 4740 | 1380 | 1500 | 1560 | 1500 | 1500 | 1500 |
|  | 6600 | 1620 | 4680 | 1320 | 1440 | 1500 | 1500 | 1500 | 1440 |
|  | 7200 | 1620 | 4620 | 1320 | 1440 | 1440 | 1440 | 1440 | 1380 |
|  | 7800 | 1620 | 4620 | 1320 | 1380 | 1440 | 1440 | 1440 | 1380 |
|  | 8400 | 1620 | 4560 | 1320 | 1380 | 1380 | 1440 | 1440 | 1320 |
|  | 9000 | 1620 | 4560 | 1320 | 1380 | 1380 | 1440 | 1440 | 1320 |
|  | 9600 | 1560 | 4500 | 1260 | 1380 | 1380 | 1440 | 1440 | 1320 |
|  | 10200 | 1560 | 4500 | 1260 | 1320 | 1380 | 1440 | 1440 | 1320 |
|  | 10800 | 1560 | 4500 | 1260 | 1320 | 1320 | 1440 | 1440 | 1260 |
| Tmax | 800 |  |  |  |  |  |  |  |  |
|  | $t 500$ | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil | Nil | 1980 | Nil | Nil | 2100 | 2100 | Nil |
|  | 3000 | Nil | Nil | 1860 | Nil | Nil | 1860 | 1860 | Nil |
|  | 3600 | Nil | Nil | 1800 | Nil | Nil | 1740 | 1740 | Nil |
|  | 4200 | 2040 | Nil | 1800 | Nil | Nil | 1740 | 1740 | Nil |
|  | 4800 | 1920 | Nil | 1740 | Nil | Nil | 1680 | 1680 | Nil |
|  | 5400 | 1920 | 5220 | 1680 | 2760 | Nil | 1680 | 1680 | Nil |
|  | 6000 | 1860 | 5160 | 1620 | 2100 | 2340 | 1620 | 1620 | Nil |
|  | 6600 | 1860 | 5100 | 1620 | 1980 | 2160 | 1620 | 1620 | Nil |
|  | 7200 | 1800 | 5040 | 1560 | 1920 | 2040 | 1620 | 1620 | Nil |
|  | 7800 | 1800 | 5040 | 1560 | 1860 | 1980 | 1620 | 1620 | Nil |
|  | 8400 | 1800 | 4980 | 1560 | 1860 | 1920 | 1560 | 1560 | Nil |
|  | 9000 | 1800 | 4920 | 1560 | 1800 | 1860 | 1560 | 1560 | Nil |
|  | 9600 | 1800 | 4920 | 1500 | 1740 | 1860 | 1560 | 1560 | 2160 |
|  | 10200 | 1740 | 4920 | 1500 | 1740 | 1800 | 1560 | 1560 | 1980 |
|  | 10800 | 1740 | 4860 | 1500 | 1740 | 1800 | 1560 | 1560 | 1920 |

FRL $=30$ minutes

| Tmax | 750 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil | Nil | 2280 | Nil | Nil | 2400 | 2400 | Nil |
|  | 3000 | Nil | Nil | 2160 | Nil | Nil | 2100 | 2100 | Nil |
|  | 3600 | Nil | Nil | 2041 | Nil | Nil | 1980 | 1980 | Nil |
|  | 4200 | Nil | Nil | 1980 | Nil | Nil | 1920 | 1920 | Nil |
|  | 4800 | Nil | Nil | 1980 | Nil | Nil | 1860 | 1860 | Nil |
|  | 5400 | 2220 | Nil | 1920 | Nil | Nil | 1860 | 1860 | Nil |
|  | 6000 | 2100 | 5160 | 1920 | Nil | Nil | 1800 | 1800 | Nil |
|  | 6600 | 2040 | 5640 | 1920 | 3300 | Nil | 1800 | 1800 | Nil |
|  | 7200 | 1980 | 5580 | 1920 | 2940 | 4080 | 1800 | 1800 | Nil |
|  | 7800 | 1980 | 5520 | 1920 | 2760 | 3180 | 1800 | 1800 | Nil |
|  | 8400 | 1980 | 5520 | 1860 | 2640 | 2940 | 1740 | 1740 | Nil |
|  | 9000 | 1980 | 5460 | 1860 | 2580 | 2820 | 1740 | 1740 | Nil |
|  | 9600 | 1980 | 5400 | 1860 | 2520 | 2700 | 1740 | 1740 | Nil |
|  | 10200 | 1980 | 5400 | 1860 | 2460 | 2640 | 1710 | 1740 | Nil |
|  | 10800 | 1980 | 5340 | 1800 | 2400 | 2580 | 1740 | 1740 | Nil |

Tmax
700

| $\mathbf{t 5 0 0}$ | SSW | MW | CW | CB | CC | SB | SC | MSD |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 600 | Nil |
| 1200 | Nil |
| 1800 | Nil |
| 2400 | Nil |
| 3000 | Nil | Nil | 2460 | Nil | Nil | 2400 | 2400 | Nil |
| 3600 | Nil | Nil | 2340 | Nil | Nil | 2220 | 2220 | Nil |
| 4200 | Nil | Nil | 2280 | Nil | Nil | 2160 | 2160 | Nil |
| 4800 | Nil | Nil | 2280 | Nil | Nil | 2100 | 2100 | Nil |
| 5400 | Nil | Nil | 2220 | Nil | Nil | 2100 | 2100 | Nil |
| 6000 | Nil | Nil | 2220 | Nil | Nil | 2040 | 2040 | Nil |
| 6600 | Nil | 6420 | 2160 | Nil | Nil | 2040 | 2040 | Nil |
| 7200 | Nil | 6300 | 2160 | Nil | Nil | 1980 | 1980 | Nil |
| 7800 | Nil | 6240 | 2160 | Nil | Nil | 1980 | 1980 | Nil |
| 8400 | Nil | 6180 | 2160 | Nil | Nil | 1980 | 1980 | Nil |
| 9000 | 2520 | 6120 | 2160 | 4380 | Nil | 1980 | 1980 | Nil |
| 9600 | 2340 | 6060 | 2100 | 4020 | Nil | 1980 | 1980 | Nil |
| 10200 | 2280 | 6000 | 2100 | 3840 | 5400 | 1980 | 1980 | Nil |
| 10800 | 2280 | 6000 | 2100 | 3720 | 4620 | 1980 | 1980 | Nil |

FRL $=30$ minutes

| Tmax | 650 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | 120 | Nil |
|  | 3000 | 120 | Nil | 2940 | Nil | Nil | 2760 | 2760 | Nil |
|  | 3600 | 120 | Nil | 2820 | Nil | Nil | 2580 | 2580 | Nil |
|  | 4200 | 120 | Nil | 2700 | Nil | Nil | 2460 | 2460 | Nil |
|  | 4800 | 120 | Nil | 2640 | Nil | Nil | 2400 | 2400 | Nil |
|  | 5400 | 120 | Nil | 2580 | Nil | Nil | 2400 | 2400 | Nil |
|  | 6000 | 120 | Nil | 2580 | Nil | Nil | 2340 | 2340 | Nil |
|  | 6600 | 120 | Nil | 2520 | Nil | Nil | 2340 | 2340 | Nil |
|  | 7200 | 120 | Nil | 2520 | Nil | Nil | 2280 | 2280 | Nil |
|  | 7800 | 120 | 7200 | 2520 | Nil | Nil | 2280 | 2280 | Nil |
|  | 8400 | 120 | 7080 | 2520 | Nil | Nil | 2280 | 2280 | Nil |
|  | 9000 | 120 | 7020 | 2460 | Nil | Nil | 2280 | 2280 | Nil |
|  | 9600 | 120 | 6960 | 2460 | Nil | Nil | 2220 | 2220 | Nil |
|  | 10200 | 120 | 6840 | 2460 | Nil | Nil | 2220 | 2220 | Nil |
|  | 10800 | 120 | 6840 | 2460 | Nil | Nil | 2220 | 2220 | Nil |

Tmax

| 600 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $t 500$ | SSW | MW | CW | CB | CC | SB | SC | MSD |
| 600 | Nil |
| 1200 | Nil |
| 1800 | Nil |
| 2400 | Nil |
| 3000 | Nil |
| 3600 | Nil | Nil | 3360 | Nil | Nil | 3000 | 3000 | Nil |
| 4200 | Nil | Nil | 3240 | Nil | Nil | 2880 | 2880 | Nil |
| 4800 | Nil | Nil | 3180 | Nil | Nil | 2820 | 2820 | Nil |
| 5400 | Nil | Nil | 3120 | Nil | Nil | 2760 | 2760 | Nil |
| 6000 | Nil | Nil | 3060 | Nil | Nil | 2760 | 2760 | Nil |
| 6600 | Nil | Nil | 3060 | Nil | Nil | 2700 | 2700 | Nil |
| 7200 | Nil | Nil | 3000 | Nil | Nil | 2700 | 2700 | Nil |
| 7800 | Nil | Nil | 3000 | Nil | Nil | 2640 | 2640 | Nil |
| 8400 | Nil | 8340 | 3000 | Nil | Nil | 2640 | 2640 | Nil |
| 9000 | Nil | 8220 | 2940 | Nil | Nil | 2640 | 2640 | Nil |
| 9600 | Nil | 8100 | 2940 | Nil | Nil | 2640 | 2640 | Nil |
| 10200 | Nil | 8040 | 2940 | Nil | Nil | 2640 | 2640 | Nil |
| 10800 | Nil | 7980 | 2940 | Nil | Nil | 2580 | 2580 | Nil |

$F R L=30$ minutes

| Tmax | 550 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil |
|  | 3600 | Nil | Nil | Nil | Nil | Nil | 3480 | 3480 | Nil |
|  | 4200 | Nil | Nil | 3840 | Nil | Nil | 3420 | 3420 | Nil |
|  | 4800 | Nil | Nil | 3780 | Nil | Nil | 3360 | 3360 | Nil |
|  | 5400 | Nil | Nil | 3780 | Nil | Nil | 3300 | 3300 | Nil |
|  | 6000 | Nil | Nil | 3720 | Nil | Nil | 3240 | 3240 | Nil |
|  | 6600 | Nil | Nil | 3720 | Nil | Nil | 3240 | 3240 | Nil |
|  | 7200 | Nil | Nil | 3660 | Nil | Nil | 3240 | 3240 | Nil |
|  | 7800 | Nil | Nil | 3660 | Nil | Nil | 3180 | 3180 | Nil |
|  | 8400 | Nil | Nil | 3660 | Nil | Nil | 3180 | 3180 | Nil |
|  | 9000 | Nil | Nil | 3600 | Nil | Nil | 3180 | 3180 | Nil |
|  | 9600 | Nil | 9600 | 3600 | Nil | Nil | 3180 | 3180 | Nil |
|  | 10200 | Nil | 9540 | 3600 | Nil | Nil | 3180 | 3180 | Nil |
|  | 10800 | Nil | 9480 | 3600 | Nil | Nil | 3120 | 3120 | Nil |
| Tmax | 500 |  |  |  |  |  |  |  |  |
|  | $t 500$ | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil |
|  | 3600 | Nil |
|  | 4200 | Nil | Nil | Nil | Nil | Nil | 3960 | 3960 | Nil |
|  | 4800 | Nil | Nil | 4560 | Nil | Nil | 3960 | 3960 | Nil |
|  | 5400 | Nil | Nil | 4560 | Nil | Nil | 3960 | 3960 | Nil |
|  | 6000 | Nil | Nil | 4560 | Nil | Nil | 3960 | 3960 | Nil |
|  | 6600 | Nil | Nil | 4560 | Nil | Nil | 3960 | 3960 | Nil |
|  | 7200 | Nil | Nil | 4560 | Nil | Nil | 3960 | 3960 | Nil |
|  | 7800 | Nil | Nil | 4560 | Nil | Nil | 3960 | 3960 | Nil |
|  | 8400 | Nil | Nil | 4560 | Nil | Nil | 3960 | 3960 | Nil |
|  | 9000 | Nil | Nil | 4560 | Nil | Nil | 3960 | 3960 | Nil |
|  | 9600 | Nil | Nil | 4560 | Nil | Nil | 3960 | 3960 | Nil |
|  | 10200 | Nil | Nil | 4560 | Nil | Nil | 3960 | 3960 | Nil |
|  | 10800 | Nil | Nil | 4560 | Nil | Nil | 3960 | 3960 | Nil |
| $\begin{array}{cc} \text { Tmax } & \underset{\mathbf{t 5 0 0}}{\text { STD F T }} \\ \hline 100 \end{array}$ |  | SSW |  | CW | CB | CC |  |  | MSD |
|  |  | Nil |

FRL $=45$ minutes

| Tmax | $\mathbf{1 2 5 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil | 120 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 1200 | Nil | 120 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 1800 | 480 | 120 | 1740 | Nil | Nil | Nil | Nil | Nil |
|  | 2400 | 480 | 120 | 1620 | 1140 | 1200 | 2160 | Nil | Nil |
|  | 3000 | 480 | 120 | 1560 | 960 | 1080 | 1860 | 1860 | 1380 |
|  | 3600 | 420 | 120 | 1560 | 960 | 1020 | 1740 | 1740 | 1260 |
|  | 4200 | 420 | 120 | 1500 | 900 | 960 | 1680 | 1680 | 1200 |
|  | 4800 | 420 | 120 | 1500 | 900 | 960 | 1680 | 1620 | 1200 |
|  | 5400 | 420 | 120 | 1500 | 900 | 960 | 1620 | 1560 | 1200 |
|  | 6000 | 420 | 120 | 1500 | 840 | 960 | 1620 | 1560 | 1140 |
|  | 6600 | 420 | 120 | 1500 | 840 | 960 | 1620 | 1560 | 1140 |
|  | 7200 | 420 | 120 | 1500 | 840 | 900 | 1620 | 1500 | 1140 |
|  | 7800 | 420 | 120 | 1500 | 840 | 900 | 1560 | 1500 | 1140 |
|  | 8400 | 420 | 120 | 1500 | 840 | 900 | 1560 | 1500 | 1140 |
|  | 9000 | 420 | 120 | 1500 | 840 | 900 | 1560 | 1500 | 1140 |
|  | 9600 | 420 | 120 | 1500 | 840 | 900 | 1560 | 1500 | 1140 |
|  | 10200 | 420 | 120 | 1500 | 840 | 900 | 1560 | 1500 | 1140 |
|  | 10800 | 420 | 120 | 1440 | 840 | 900 | 1560 | 1500 | 1080 |


| Tmax | $\mathbf{1 2 0 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil | 120 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 1800 | 540 | 120 | 1800 | Nil | Nil | Nil | Nil | Nil |
|  | 2400 | 480 | 120 | 1680 | 1440 | 1440 | 2400 | Nil | Nil |
|  | 3000 | 480 | 120 | 1620 | 1140 | 1200 | 1980 | 2040 | 1560 |
|  | 3600 | 480 | 120 | 1620 | 1080 | 1140 | 1860 | 1860 | 1380 |
|  | 4200 | 480 | 120 | 1560 | 1020 | 1080 | 1800 | 1800 | 1320 |
|  | 4800 | 480 | 120 | 1560 | 960 | 1080 | 1740 | 1740 | 1320 |
|  | 5400 | 480 | 120 | 1560 | 960 | 1020 | 1740 | 1680 | 1260 |
|  | 6000 | 480 | 120 | 1560 | 960 | 1020 | 1680 | 1680 | 1260 |
|  | 6600 | 480 | 120 | 1560 | 960 | 1020 | 1680 | 1620 | 1260 |
|  | 7200 | 480 | 120 | 1560 | 900 | 1020 | 1680 | 1620 | 1200 |
|  | 7800 | 480 | 120 | 1560 | 900 | 1020 | 1680 | 1620 | 1200 |
|  | 8400 | 480 | 120 | 1500 | 900 | 1020 | 1620 | 1560 | 1200 |
|  | 9000 | 480 | 120 | 1500 | 900 | 1020 | 1620 | 1560 | 1200 |
|  | 9600 | 480 | 120 | 1500 | 900 | 960 | 1620 | 1560 | 1200 |
|  | 10200 | 480 | 120 | 1500 | 900 | 960 | 1620 | 1560 | 1200 |
|  | 10800 | 480 | 120 | 1500 | 900 | 960 | 1620 | 1560 | 1200 |

FRL $=45$ minutes

| Tmax | $\mathbf{1 1 5 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil | 180 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 1800 | Nil | 120 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 2400 | 540 | 120 | 1740 | Nil | Nil | Nil | Nil | Nil |
|  | 3000 | 540 | 120 | 1680 | 1380 | 1380 | 2100 | 2280 | 1860 |
|  | 3600 | 480 | 120 | 1680 | 1200 | 1260 | 1980 | 2040 | 1560 |
|  | 4200 | 480 | 120 | 1620 | 1140 | 1200 | 1920 | 1920 | 1440 |
|  | 4800 | 480 | 120 | 1620 | 1080 | 1200 | 1860 | 1860 | 1440 |
|  | 5400 | 480 | 120 | 1620 | 1080 | 1140 | 1800 | 1800 | 1380 |
|  | 6000 | 480 | 120 | 1620 | 1080 | 1140 | 1800 | 1740 | 1380 |
|  | 6600 | 480 | 120 | 1620 | 1020 | 1140 | 1800 | 1740 | 1320 |
|  | 7200 | 480 | 120 | 1620 | 1020 | 1080 | 1740 | 1740 | 1320 |
|  | 7800 | 480 | 120 | 1620 | 1020 | 1080 | 1740 | 1680 | 1320 |
|  | 8400 | 480 | 120 | 1560 | 1020 | 1080 | 1740 | 1680 | 1320 |
|  | 9000 | 480 | 120 | 1560 | 1020 | 1080 | 1740 | 1680 | 1260 |
|  | 9600 | 480 | 120 | 1560 | 1020 | 1080 | 1740 | 1680 | 1260 |
|  | 10200 | 480 | 120 | 1560 | 1020 | 1080 | 1740 | 1680 | 1260 |
|  | 10800 | 480 | 120 | 1560 | 1020 | 1080 | 1680 | 1680 | 1260 |


| Tmax | $\mathbf{1 1 0 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil | 240 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 1800 | Nil | 180 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 2400 | Nil | 180 | 1860 | Nil | Nil | Nil | Nil | Nil |
|  | 3000 | 600 | 180 | 1800 | Nil | 1740 | 2280 | 2520 | Nil |
|  | 3600 | 540 | 180 | 1740 | 1440 | 1500 | 2100 | 2160 | 1860 |
|  | 4200 | 540 | 180 | 1740 | 1320 | 1380 | 2040 | 2040 | 1620 |
|  | 4800 | 540 | 180 | 1680 | 1260 | 1320 | 1980 | 1980 | 1560 |
|  | 5400 | 540 | 180 | 1680 | 1200 | 1260 | 1920 | 1920 | 1500 |
|  | 6000 | 540 | 180 | 1680 | 1200 | 1260 | 1920 | 1860 | 1500 |
|  | 6600 | 540 | 180 | 1680 | 1200 | 1260 | 1860 | 1860 | 1440 |
|  | 7200 | 540 | 180 | 1680 | 1140 | 1200 | 1860 | 1860 | 1440 |
|  | 7800 | 540 | 180 | 1680 | 1140 | 1200 | 1860 | 1800 | 1440 |
|  | 8400 | 540 | 180 | 1680 | 1140 | 1200 | 1860 | 1800 | 1440 |
|  | 9000 | 540 | 180 | 1680 | 1140 | 1200 | 1800 | 1800 | 1380 |
|  | 9600 | 540 | 180 | 1680 | 1140 | 1200 | 1800 | 1800 | 1380 |
|  | 10200 | 540 | 180 | 1620 | 1140 | 1200 | 1800 | 1740 | 1380 |
|  | 10800 | 540 | 180 | 1620 | 1140 | 1200 | 1800 | 1740 | 1380 |

FRL $=45$ minutes

| Tmax | $\mathbf{1 0 5 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil | 240 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 2400 | Nil | 240 | 1980 | Nil | Nil | Nil | Nil | Nil |
|  | 3000 | Nil | 240 | 1860 | Nil | Nil | 2520 | 2940 | Nil |
|  | 3600 | Nil | 240 | 1860 | 2160 | 1860 | 2280 | 2400 | Nil |
|  | 4200 | 660 | 240 | 1800 | 1620 | 1620 | 2160 | 2220 | 1980 |
|  | 4800 | 600 | 240 | 1800 | 1500 | 1560 | 2100 | 2160 | 1800 |
|  | 5400 | 600 | 180 | 1800 | 1440 | 1500 | 2040 | 2100 | 1740 |
|  | 6000 | 600 | 180 | 1740 | 1381 | 1440 | 2040 | 2040 | 1680 |
|  | 6600 | 600 | 180 | 1740 | 1380 | 1440 | 1980 | 1980 | 1620 |
|  | 7200 | 600 | 180 | 1740 | 1320 | 1380 | 1980 | 1980 | 1620 |
|  | 7800 | 600 | 180 | 1740 | 1320 | 1380 | 1980 | 1920 | 1560 |
|  | 8400 | 600 | 180 | 1740 | 1320 | 1380 | 1920 | 1920 | 1560 |
|  | 9000 | 600 | 180 | 1740 | 1320 | 1320 | 1920 | 1920 | 1560 |
|  | 9600 | 600 | 180 | 1740 | 1260 | 1320 | 1920 | 1920 | 1560 |
|  | 10200 | 600 | 180 | 1740 | 1260 | 1320 | 1920 | 1920 | 1500 |
|  | 10800 | 600 | 180 | 1740 | 1260 | 1320 | 1920 | 1860 | 1500 |


| Tmax | $\mathbf{1 0 0 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil | 420 | 2160 | Nil | Nil | Nil | Nil | Nil |
|  | 3000 | Nil | 360 | 2040 | Nil | Nil | 2820 | Nil | Nil |
|  | 3600 | Nil | 300 | 1980 | Nil | Nil | 2460 | 2700 | Nil |
|  | 4200 | Nil | 300 | 1920 | Nil | 2100 | 1340 | 2460 | Nil |
|  | 4800 | 2340 | 300 | 1920 | 1920 | 1860 | 2220 | 2340 | 2220 |
|  | 5400 | 2280 | 300 | 1860 | 1740 | 1740 | 2220 | 2220 | 2040 |
|  | 6000 | 2220 | 300 | 1860 | 1680 | 1680 | 2160 | 2220 | 1920 |
|  | 6600 | 2160 | 300 | 1860 | 1620 | 1620 | 2100 | 2160 | 1860 |
|  | 7200 | 2100 | 300 | 1860 | 1560 | 1620 | 2100 | 2100 | 1800 |
|  | 7800 | 2100 | 300 | 1860 | 1560 | 1560 | 2100 | 2100 | 1800 |
|  | 8400 | 2040 | 300 | 1860 | 1560 | 1560 | 2040 | 2100 | 1740 |
|  | 9000 | 780 | 300 | 1800 | 1500 | 1560 | 2040 | 2040 | 1740 |
|  | 9600 | 720 | 300 | 1800 | 1500 | 1560 | 2040 | 2040 | 1740 |
|  | 10200 | 720 | 300 | 1800 | 1500 | 1500 | 2040 | 2040 | 1680 |
|  | 10800 | 720 | 300 | 1800 | 1500 | 1500 | 2040 | 2040 | 1680 |

FRL $=45$ minutes

| Tmax | $\mathbf{9 5 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil | Nil | 2340 | Nil | Nil | Nil | Nil | Nil |
|  | 3000 | Nil | Nil | 2160 | Nil | Nil | Nil | Nil | Nil |
|  | 3600 | Nil | Nil | 2100 | Nil | Nil | 2700 | 3060 | Nil |
|  | 4200 | Nil | 600 | 2040 | Nil | Nil | 2520 | 2700 | Nil |
|  | 4800 | Nil | 540 | 2040 | Nil | 2640 | 2400 | 2580 | Nil |
|  | 5400 | 2580 | 480 | 1980 | 2520 | 2220 | 2340 | 2460 | Nil |
|  | 6000 | 2460 | 480 | 1980 | 2220 | 2100 | 2340 | 2400 | 2400 |
|  | 6600 | 2340 | 480 | 1980 | 2040 | 1980 | 2280 | 2340 | 2220 |
|  | 7200 | 2340 | 420 | 1980 | 1980 | 1920 | 2280 | 2340 | 2160 |
|  | 7800 | 2280 | 420 | 1980 | 1920 | 1920 | 2220 | 2280 | 2100 |
|  | 8400 | 2280 | 420 | 1920 | 1860 | 1860 | 2220 | 2280 | 2040 |
|  | 9000 | 2220 | 420 | 1920 | 1860 | 1800 | 2220 | 2220 | 1980 |
|  | 9600 | 2220 | 420 | 1920 | 1800 | 1800 | 2160 | 2220 | 1980 |
|  | 10200 | 2220 | 420 | 1920 | 1800 | 1800 | 2160 | 2220 | 1980 |
|  | 10800 | 2220 | 420 | 1920 | 1740 | 1740 | 2160 | 2220 | 1920 |


| Tmax | $\mathbf{9 0 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil | Nil | 2400 | Nil | Nil | Nil | Nil | Nil |
|  | 3600 | Nil | Nil | 2280 | Nil | Nil | 3000 | Nil | Nil |
|  | 4200 | Nil | Nil | 2220 | Nil | Nil | 2760 | 3060 | Nil |
|  | 4800 | Nil | Nil | 2220 | Nil | Nil | 2640 | 2820 | Nil |
|  | 5400 | Nil | 4800 | 2160 | Nil | Nil | 2580 | 2700 | Nil |
|  | 6000 | Nil | 4800 | 2160 | Nil | 2940 | 2520 | 2640 | Nil |
|  | 6600 | 2700 | 4740 | 2100 | 3120 | 2640 | 2460 | 2580 | Nil |
|  | 7200 | 2640 | 4680 | 2100 | 2700 | 2460 | 2460 | 2520 | Nil |
|  | 7800 | 2580 | 4680 | 2100 | 2580 | 2400 | 2400 | 2520 | 2760 |
|  | 8400 | 2520 | 4620 | 2100 | 2460 | 2340 | 2400 | 2460 | 2580 |
|  | 9000 | 2460 | 4620 | 2100 | 2340 | 2280 | 2400 | 2460 | 2460 |
|  | 9600 | 2460 | 4620 | 2100 | 2280 | 2220 | 2340 | 2460 | 2400 |
|  | 10200 | 2460 | 4560 | 2100 | 2280 | 2160 | 2340 | 2400 | 2400 |
|  | 10800 | 2400 | 4560 | 2040 | 2220 | 2160 | 2340 | 2400 | 2340 |

FRL $=45$ minutes

| Tmax | $\mathbf{8 5 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil | Nil | 2640 | Nil | Nil | Nil | Nil | Nil |
|  | 3600 | Nil | Nil | 2520 | Nil | Nil | 3360 | Nil | Nil |
|  | 4200 | Nil | Nil | 2460 | Nil | Nil | 3060 | 3540 | Nil |
|  | 4800 | Nil | Nil | 2400 | Nil | Nil | 2880 | 3180 | Nil |
|  | 5400 | Nil | 5220 | 2340 | Nil | Nil | 2820 | 3060 | Nil |
|  | 6000 | Nil | 5160 | 2340 | Nil | Nil | 2760 | 2940 | Nil |
|  | 6600 | Nil | 5100 | 2340 | Nil | Nil | 2700 | 2880 | Nil |
|  | 7200 | Nil | 5040 | 2280 | Nil | 3840 | 2640 | 2820 | Nil |
|  | 7800 | 3150 | 5040 | 2280 | Nil | 3360 | 2640 | 2760 | Nil |
|  | 8400 | 2940 | 4980 | 2280 | 3840 | 3120 | 2580 | 2760 | Nil |
|  | 9000 | 2880 | 4980 | 2280 | 3420 | 3000 | 2580 | 2700 | Nil |
|  | 9600 | 2820 | 4920 | 2280 | 3240 | 2880 | 2580 | 2700 | Nil |
|  | 10200 | 2760 | 4920 | 2220 | 3120 | 2820 | 2520 | 2640 | Nil |
|  | 10800 | 2760 | 4920 | 2220 | 3000 | 2760 | 2520 | 2640 | 3360 |


| Tmax | $\mathbf{8 0 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil |
|  | 3600 | Nil | Nil | 2820 | Nil | Nil | Nil | Nil | Nil |
|  | 4200 | Nil | Nil | 2700 | Nil | Nil | 3420 | 4200 | Nil |
|  | 4800 | Nil | Nil | 2640 | Nil | Nil | 3240 | 3660 | Nil |
|  | 5400 | Nil | Nil | 2580 | Nil | Nil | 3120 | 3420 | Nil |
|  | 6000 | Nil | 5640 | 2580 | Nil | Nil | 3000 | 3300 | Nil |
|  | 6600 | Nil | 5580 | 2520 | Nil | Nil | 2940 | 3240 | Nil |
|  | 7200 | Nil | 5520 | 2520 | Nil | Nil | 2880 | 3120 | Nil |
|  | 7800 | Nil | 5460 | 2520 | Nil | Nil | 2880 | 3120 | Nil |
|  | 8400 | Nil | 5460 | 2520 | Nil | Nil | 2820 | 3060 | Nil |
|  | 9000 | Nil | 5400 | 2460 | Nil | Nil | 2820 | 3000 | Nil |
|  | 9600 | Nil | 5340 | 2460 | Nil | 4380 | 2820 | 3000 | Nil |
|  | 10200 | Nil | 5340 | 2460 | Nil | 4080 | 2760 | 2940 | Nil |
|  | 10800 | Nil | 5280 | 2460 | 5340 | 3900 | 2760 | 2940 | Nil |

FRL $=45$ minutes

| Tmax | $\mathbf{7 5 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil |
|  | 3600 | Nil | Nil | 3240 | Nil | Nil | Nil | Nil | Nil |
|  | 4200 | Nil | Nil | 3060 | Nil | Nil | 3900 | Nil | Nil |
|  | 4800 | Nil | Nil | 3000 | Nil | Nil | 3600 | 4320 | Nil |
|  | 5400 | Nil | Nil | 2940 | Nil | Nil | 3480 | 3960 | Nil |
|  | 6000 | Nil | Nil | 2880 | Nil | Nil | 3360 | 3780 | Nil |
|  | 6600 | Nil | 6240 | 2880 | Nil | Nil | 3300 | 3660 | Nil |
|  | 7200 | Nil | 6120 | 2820 | Nil | Nil | 3240 | 3600 | Nil |
|  | 7800 | Nil | 6060 | 2820 | Nil | Nil | 3180 | 3480 | Nil |
|  | 8400 | Nil | 6000 | 2760 | Nil | Nil | 3180 | 3480 | Nil |
|  | 9000 | Nil | 5940 | 2760 | Nil | Nil | 3120 | 3420 | Nil |
|  | 9600 | Nil | 5940 | 2760 | Nil | Nil | 3120 | 3360 | Nil |
|  | 10200 | Nil | 5880 | 2760 | Nil | Nil | 3060 | 3360 | Nil |
|  | 10800 | Nil | 5820 | 2760 | Nil | Nil | 3060 | 3300 | Nil |


| Tmax | 700 |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil |
|  | 3600 | Nil |
|  | 4200 | Nil | Nil | 3600 | Nil | Nil | Nil | Nil | Nil |
|  | 4800 | Nil | Nil | 3420 | Nil | Nil | 4140 | Nil | Nil |
|  | 5400 | Nil | Nil | 3360 | Nil | Nil | 3900 | 4680 | Nil |
|  | 6000 | Nil | Nil | 3300 | Nil | Nil | 3780 | 4380 | Nil |
|  | 6600 | Nil | Nil | 3240 | Nil | Nil | 3720 | 4260 | Nil |
|  | 7200 | Nil | 6960 | 3240 | Nil | Nil | 3660 | 4140 | Nil |
|  | 7800 | Nil | 6840 | 3180 | Nil | Nil | 3600 | 4020 | Nil |
|  | 8400 | Nil | 6780 | 3180 | Nil | Nil | 3540 | 3960 | Nil |
|  | 9000 | Nil | 6720 | 3120 | Nil | Nil | 3480 | 3900 | Nil |
|  | 9600 | Nil | 6660 | 3120 | Nil | Nil | 3480 | 3840 | Nil |
|  | 10200 | Nil | 6600 | 3120 | Nil | Nil | 3480 | 3840 | Nil |
|  | 10800 | Nil | 6540 | 3120 | Nil | Nil | 3420 | 3780 | Nil |

$F R L=45$ minutes

| Tmax | $\mathbf{6 5 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil |
|  | 3600 | Nil |
|  | 4200 | Nil |
|  | 4800 | Nil | Nil | 4080 | Nil | Nil | 4740 | Nil | Nil |
|  | 5400 | Nil | Nil | 3960 | Nil | Nil | 4500 | Nil | Nil |
|  | 6000 | Nil | Nil | 3840 | Nil | Nil | 4320 | 5220 | Nil |
|  | 6600 | Nil | Nil | 3780 | Nil | Nil | 4200 | 4980 | Nil |
|  | 7200 | Nil | Nil | 3720 | Nil | Nil | 4140 | 4860 | Nil |
|  | 7800 | Nil | Nil | 3720 | Nil | Nil | 4080 | 4740 | Nil |
|  | 8400 | Nil | 7800 | 3660 | Nil | Nil | 4020 | 4620 | Nil |
|  | 9000 | Nil | 7680 | 3660 | Nil | Nil | 4020 | 4560 | Nil |
|  | 9600 | Nil | 7620 | 3600 | Nil | Nil | 3960 | 4500 | Nil |
|  | 10200 | Nil | 7560 | 3600 | Nil | Nil | 3960 | 4440 | Nil |
|  | 10800 | Nil | 7500 | 3600 | Nil | Nil | 3900 | 4440 | Nil |


| Tmax | $\mathbf{6 0 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil |
|  | 3600 | Nil |
|  | 4200 | Nil |
|  | 4800 | Nil |
|  | 5400 | Nil | Nil | 4680 | Nil | Nil | 5220 | Nil | Nil |
|  | 6000 | Nil | Nil | 4560 | Nil | Nil | 5040 | Nil | Nil |
|  | 6600 | Nil | Nil | 4500 | Nil | Nil | 4920 | 5940 | Nil |
|  | 7200 | Nil | Nil | 4440 | Nil | Nil | 4800 | 5760 | Nil |
|  | 7800 | Nil | Nil | 4380 | Nil | Nil | 4740 | 5640 | Nil |
|  | 8400 | Nil | Nil | 4380 | Nil | Nil | 4680 | 5520 | Nil |
|  | 9000 | Nil | Nil | 4320 | Nil | Nil | 4620 | 5460 | Nil |
|  | 9600 | Nil | 8940 | 4320 | Nil | Nil | 4620 | 5340 | Nil |
|  | 10200 | Nil | 8880 | 4260 | Nil | Nil | 4560 | 5340 | Nil |
|  | 10800 | Nil | 8760 | 4260 | Nil | Nil | 4560 | 5280 | Nil |

$F R L=45$ minutes

| Tmax | $\mathbf{5 5 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil |
|  | 3600 | Nil |
|  | 4200 | Nil |
|  | 4800 | Nil |
|  | 5400 | Nil |
|  | 6000 | Nil | Nil | 5520 | Nil | Nil | 5820 | Nil | Nil |
|  | 6600 | Nil | Nil | 5460 | Nil | Nil | 5700 | Nil | Nil |
|  | 7200 | Nil | Nil | 5400 | Nil | Nil | 5640 | 6780 | Nil |
|  | 7800 | Nil | Nil | 5340 | Nil | Nil | 5580 | 6660 | Nil |
|  | 8400 | Nil | Nil | 5340 | Nil | Nil | 5520 | 6600 | Nil |
|  | 9000 | Nil | Nil | 5280 | Nil | Nil | 5460 | 6540 | Nil |
|  | 9600 | Nil | Nil | 5280 | Nil | Nil | 5460 | 6480 | Nil |
|  | 10200 | Nil | Nil | 5220 | Nil | Nil | 5400 | 6420 | Nil |
|  | 10800 | Nil | 10440 | 5220 | Nil | Nil | 5400 | 6360 | Nil |


| Tmax | $\mathbf{5 0 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil |
|  | 3600 | Nil |
|  | 4200 | Nil |
|  | 4800 | Nil |
|  | 5400 | Nil |
|  | 6000 | Nil |
|  | 6600 | Nil | Nil | 6480 | Nil | Nil | 6540 | Nil | Nil |
|  | 7200 | Nil | Nil | 6480 | Nil | Nil | 6540 | Nil | Nil |
|  | 7800 | Nil | Nil | 6480 | Nil | Nil | 6540 | 7800 | Nil |
|  | 8400 | Nil | Nil | 6480 | Nil | Nil | 6540 | 7800 | Nil |
|  | 9000 | Nil | Nil | 6480 | Nil | Nil | 6540 | 7800 | Nil |
|  | 9600 | Nil | Nil | 6480 | Nil | Nil | 6540 | 7800 | Nil |
|  | 10200 | Nil | Nil | 6480 | Nil | Nil | 6540 | 7800 | Nil |
|  | 10800 | Nil | Nil | 6480 | Nil | Nil | 6540 | 7800 | Nil |
|  |  |  |  |  |  |  |  |  |  |
| Tmax | STD |  |  |  |  |  |  |  |  |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  |  | Fail |

FRL $=60$ minutes

| Tmax | $\mathbf{1 2 5 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil | 120 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 1200 | Nil | 120 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 1800 | Nil | 120 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 2400 | Nil | 120 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 3000 | 840 | 120 | 2700 | Nil | Nil | Nil | Nil | Nil |
|  | 3600 | 780 | 120 | 2580 | 2040 | 2220 | 3180 | 3480 | Nil |
|  | 4200 | 780 | 120 | 2520 | 1860 | 1920 | 2820 | 2880 | 2460 |
|  | 4800 | 780 | 120 | 2460 | 1740 | 1800 | 2640 | 2640 | 2220 |
|  | 5400 | 720 | 120 | 2460 | 1680 | 1740 | 2520 | 2580 | 2100 |
|  | 6000 | 720 | 120 | 2400 | 1620 | 1740 | 2460 | 2460 | 2040 |
|  | 6600 | 720 | 120 | 2400 | 1620 | 1680 | 2400 | 2400 | 2040 |
|  | 7200 | 720 | 120 | 2400 | 1560 | 1680 | 2400 | 2400 | 1980 |
|  | 7800 | 720 | 120 | 2400 | 1560 | 1620 | 2340 | 2340 | 1980 |
|  | 8400 | 720 | 120 | 2400 | 1560 | 1620 | 2340 | 2340 | 1920 |
|  | 9000 | 720 | 120 | 2400 | 1560 | 1620 | 2280 | 2280 | 1920 |
|  | 9600 | 720 | 120 | 2340 | 1500 | 1620 | 2280 | 2280 | 1920 |
|  | 10200 | 720 | 120 | 2340 | 1500 | 1620 | 2280 | 2280 | 1860 |
|  | 10800 | 720 | 120 | 2340 | 1500 | 1560 | 2280 | 2280 | 1860 |


| Tmax | $\mathbf{1 2 0 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil | 120 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 1800 | Nil | 120 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 2400 | Nil | 120 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 3000 | Nil | 120 | 2820 | Nil | Nil | Nil | Nil | Nil |
|  | 3600 | 900 | 120 | 2700 | Nil | Nil | Nil | Nil | Nil |
|  | 4200 | 840 | 120 | 2640 | 2100 | 2220 | 3000 | 3120 | Nil |
|  | 4800 | 840 | 120 | 2580 | 1920 | 2040 | 2820 | 2880 | 2520 |
|  | 5400 | 840 | 120 | 2520 | 1860 | 1980 | 2700 | 2700 | 2340 |
|  | 6000 | 780 | 120 | 2520 | 1800 | 1920 | 2580 | 2640 | 2220 |
|  | 6600 | 780 | 120 | 2520 | 1740 | 1860 | 2580 | 2580 | 2160 |
|  | 7200 | 780 | 120 | 2460 | 1740 | 1800 | 2520 | 2520 | 2160 |
|  | 7800 | 780 | 120 | 2460 | 1680 | 1800 | 2460 | 2460 | 2100 |
|  | 8400 | 780 | 120 | 2460 | 1680 | 1800 | 2460 | 2460 | 2100 |
|  | 9000 | 780 | 120 | 2460 | 1680 | 1740 | 2400 | 2460 | 2040 |
|  | 9600 | 780 | 120 | 2460 | 1680 | 1740 | 2400 | 2400 | 2040 |
|  | 10200 | 780 | 120 | 2460 | 1620 | 1740 | 2400 | 2400 | 2040 |
|  | 10800 | 780 | 120 | 2460 | 1620 | 1740 | 2400 | 2400 | 1980 |

FRL $=60$ minutes

| Tmax | $\mathbf{1 1 5 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil | 120 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 1800 | Nil | 120 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 2400 | Nil | 120 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 3000 | Nil | 120 | 2940 | Nil | Nil | Nil | Nil | Nil |
|  | 3600 | Nil | 120 | 2820 | Nil | Nil | Nil | Nil | Nil |
|  | 4200 | 1020 | 120 | 2760 | 2580 | Nil | 3300 | 3480 | Nil |
|  | 4800 | 960 | 120 | 2700 | 2220 | 2400 | 3000 | 3120 | 3060 |
|  | 5400 | 900 | 120 | 2640 | 2100 | 2220 | 2880 | 2940 | 2640 |
|  | 6000 | 900 | 120 | 2640 | 2040 | 2100 | 2760 | 2820 | 2520 |
|  | 6600 | 900 | 120 | 2580 | 1980 | 2040 | 2700 | 2760 | 2400 |
|  | 7200 | 840 | 120 | 2580 | 1920 | 2040 | 2640 | 2700 | 2340 |
|  | 7800 | 840 | 120 | 2580 | 1860 | 1980 | 2640 | 2640 | 2280 |
|  | 8400 | 840 | 120 | 2580 | 1860 | 1980 | 2580 | 2640 | 2280 |
|  | 9000 | 840 | 120 | 2580 | 1860 | 1920 | 2580 | 2580 | 2220 |
|  | 9600 | 840 | 120 | 2520 | 1800 | 1920 | 2580 | 2580 | 2220 |
|  | 10200 | 840 | 120 | 2520 | 1800 | 1920 | 2520 | 2520 | 2160 |
|  | 10800 | 840 | 120 | 2520 | 1800 | 1860 | 2520 | 2520 | 2160 |


| Tmax | $\mathbf{1 1 0 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil | 240 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 1800 | Nil | 180 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 2400 | Nil | 180 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 3000 | Nil | 180 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 3600 | Nil | 180 | 3000 | Nil | Nil | Nil | Nil | Nil |
|  | 4200 | Nil | 180 | 2880 | Nil | Nil | 3660 | 3960 | Nil |
|  | 4800 | Nil | 180 | 2820 | 2760 | 3120 | 3300 | 3420 | Nil |
|  | 5400 | Nil | 180 | 2760 | 2460 | 2640 | 3120 | 3180 | 3300 |
|  | 6000 | 1080 | 180 | 2760 | 2280 | 2460 | 3000 | 3060 | 2880 |
|  | 6600 | 1020 | 180 | 2700 | 2220 | 2340 | 2880 | 2940 | 2700 |
|  | 7200 | 960 | 180 | 2700 | 2160 | 2280 | 2820 | 2880 | 2580 |
|  | 7800 | 960 | 180 | 2700 | 2100 | 2220 | 2820 | 2820 | 2520 |
|  | 8400 | 960 | 180 | 2700 | 2100 | 2160 | 2760 | 2820 | 2460 |
|  | 9000 | 960 | 180 | 2640 | 2040 | 2160 | 2760 | 2760 | 2460 |
|  | 9600 | 960 | 180 | 2640 | 2040 | 2100 | 2700 | 2760 | 2400 |
|  | 10200 | 900 | 180 | 2640 | 1980 | 2100 | 2700 | 2700 | 2400 |
|  | 10800 | 900 | 180 | 2640 | 1980 | 2100 | 2700 | 2700 | 2340 |

FRL $=60$ minutes

| Tmax | $\mathbf{1 0 5 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil | 300 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 2400 | Nil | 240 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 3000 | Nil | 240 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 3600 | Nil | 240 | 3180 | Nil | Nil | Nil | Nil | Nil |
|  | 4200 | Nil | 240 | 3060 | Nil | Nil | 4200 | Nil | Nil |
|  | 4800 | Nil | 240 | 2940 | Nil | Nil | 3600 | 3780 | Nil |
|  | 5400 | Nil | 240 | 2940 | 3060 | Nil | 3360 | 3480 | Nil |
|  | 6000 | Nil | 240 | 2880 | 2760 | 2940 | 3240 | 3300 | Nil |
|  | 6600 | Nil | 240 | 2880 | 2580 | 2760 | 3120 | 3180 | 3240 |
|  | 7200 | Nil | 180 | 2820 | 2460 | 2640 | 3060 | 3120 | 3000 |
|  | 7800 | Nil | 180 | 2820 | 2400 | 2580 | 3000 | 3060 | 2880 |
|  | 8400 | Nil | 180 | 2820 | 2340 | 2520 | 2940 | 3000 | 2820 |
|  | 9000 | Nil | 180 | 2820 | 2340 | 2460 | 2940 | 3000 | 2760 |
|  | 9600 | Nil | 180 | 2760 | 2280 | 2400 | 2880 | 2940 | 2700 |
|  | 10200 | 1200 | 180 | 2760 | 2280 | 2400 | 2880 | 2940 | 2640 |
|  | 10800 | 1200 | 180 | 2760 | 2280 | 2340 | 2880 | 2880 | 2640 |


| Tmax | $\mathbf{1 0 0 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil | 360 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 3600 | Nil | 360 | 3420 | Nil | Nil | Nil | Nil | Nil |
|  | 4200 | Nil | 300 | 3240 | Nil | Nil | Nil | Nil | Nil |
|  | 4800 | Nil | 300 | 3180 | Nil | Nil | 3960 | 4320 | Nil |
|  | 5400 | Nil | 300 | 3120 | Nil | Nil | 3660 | 3840 | Nil |
|  | 6000 | Nil | 300 | 3060 | 3960 | Nil | 3480 | 3600 | Nil |
|  | 6600 | Nil | 300 | 3000 | 3180 | 36900 | 3360 | 3480 | Nil |
|  | 7200 | Nil | 300 | 3000 | 3000 | 3240 | 3300 | 3360 | Nil |
|  | 7800 | Nil | 300 | 3000 | 2880 | 3060 | 3240 | 3300 | 3540 |
|  | 8400 | Nil | 300 | 2940 | 2760 | 2940 | 3180 | 3240 | 3300 |
|  | 9000 | Nil | 300 | 2940 | 2700 | 2880 | 3120 | 3180 | 3180 |
|  | 9600 | Nil | 300 | 2940 | 2640 | 2820 | 3120 | 3180 | 3120 |
|  | 10200 | Nil | 300 | 2940 | 2580 | 2760 | 3060 | 3120 | 3060 |
|  | 10800 | Nil | 300 | 2940 | 2580 | 2700 | 3060 | 3120 | 3000 |

FRL $=60$ minutes

| Tmax | $\mathbf{9 5 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil |
|  | 3600 | Nil |
|  | 4200 | Nil | Nil | 3540 | Nil | Nil | Nil | Nil | Nil |
|  | 4800 | Nil | 600 | 3420 | Nil | Nil | 4560 | Nil | Nil |
|  | 5400 | Nil | 540 | 3300 | Nil | Nil | 4080 | 4320 | Nil |
|  | 6000 | Nil | 540 | 3240 | Nil | Nil | 3840 | 4020 | Nil |
|  | 6600 | Nil | 480 | 3240 | Nil | Nil | 3660 | 3440 | Nil |
|  | 7200 | Nil | 480 | 3180 | 4140 | Nil | 3600 | 3720 | Nil |
|  | 7800 | Nil | 480 | 3180 | 3660 | 4080 | 3480 | 3600 | Nil |
|  | 8400 | Nil | 480 | 3120 | 3420 | 3720 | 3420 | 3540 | Nil |
|  | 9000 | Nil | 480 | 3120 | 3300 | 3540 | 3420 | 3480 | 4320 |
|  | 9600 | Nil | 420 | 3120 | 3180 | 3420 | 3360 | 3420 | 3900 |
|  | 10200 | Nil | 420 | 3120 | 3120 | 3300 | 3360 | 3420 | 3720 |
|  | 10800 | Nil | 420 | 3060 | 3060 | 3240 | 3300 | 3360 | 3600 |


| Tmax | $\mathbf{9 0 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil |
|  | 3600 | Nil |
|  | 4200 | Nil | Nil | 3840 | Nil | Nil | Nil | Nil | Nil |
|  | 4800 | Nil | Nil | 3720 | Nil | Nil | Nil | Nil | Nil |
|  | 5400 | Nil | 4860 | 3600 | Nil | Nil | 4560 | 4980 | Nil |
|  | 6000 | Nil | 4800 | 3540 | Nil | Nil | 4260 | 4500 | Nil |
|  | 6600 | Nil | 4800 | 3480 | Nil | Nil | 4080 | 4260 | Nil |
|  | 7200 | Nil | 4740 | 3420 | Nil | Nil | 3900 | 4080 | Nil |
|  | 7800 | Nil | 4740 | 3420 | Nil | Nil | 3840 | 3960 | Nil |
|  | 8400 | Nil | 4680 | 3360 | 5100 | Nil | 3780 | 3900 | Nil |
|  | 9000 | Nil | 4680 | 3360 | 4440 | 5400 | 3720 | 3840 | Nil |
|  | 9600 | Nil | 4620 | 3360 | 4140 | 4620 | 3660 | 3780 | Nil |
|  | 10200 | Nil | 4620 | 3300 | 3960 | 4320 | 3600 | 3720 | Nil |
|  | 10800 | Nil | 4620 | 3300 | 3780 | 4140 | 3600 | 3660 | Nil |

FRL $=60$ minutes

| Tmax | $\mathbf{8 5 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil |
|  | 3600 | Nil |
|  | 4200 | Nil |
|  | 4800 | Nil | Nil | 4080 | Nil | Nil | Nil | Nil | Nil |
|  | 5400 | Nil | 5280 | 3960 | Nil | Nil | 5280 | Nil | Nil |
|  | 6000 | Nil | 5220 | 3840 | Nil | Nil | 4740 | 5160 | Nil |
|  | 6600 | Nil | 5160 | 3780 | Nil | Nil | 4500 | 4800 | Nil |
|  | 7200 | Nil | 5100 | 3720 | Nil | Nil | 4320 | 4560 | Nil |
|  | 7800 | Nil | 5100 | 3720 | Nil | Nil | 4260 | 4440 | Nil |
|  | 8400 | Nil | 5040 | 3660 | Nil | Nil | 4140 | 4320 | Nil |
|  | 9000 | Nil | 5040 | 3660 | Nil | Nil | 4080 | 4260 | Nil |
|  | 9600 | Nil | 4980 | 3600 | Nil | Nil | 4020 | 4140 | Nil |
|  | 10200 | Nil | 4980 | 3600 | 6060 | Nil | 3960 | 4140 | Nil |
|  | 10800 | Nil | 4920 | 3600 | 5340 | Nil | 3960 | 4080 | Nil |


| Tmax | $\mathbf{8 0 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil |
|  | 3600 | Nil |
|  | 4200 | Nil |
|  | 4800 | Nil | Nil | 4620 | Nil | Nil | Nil | Nil | Nil |
|  | 5400 | Nil | Nil | 4440 | Nil | Nil | Nil | Nil | Nil |
|  | 6000 | Nil | 5700 | 4320 | Nil | Nil | 5460 | Nil | Nil |
|  | 6600 | Nil | 5640 | 4200 | Nil | Nil | 5100 | 5460 | Nil |
|  | 7200 | Nil | 5580 | 4140 | Nil | Nil | 4860 | 5160 | Nil |
|  | 7800 | Nil | 5520 | 4080 | Nil | Nil | 4740 | 4980 | Nil |
|  | 8400 | Nil | 5520 | 4020 | Nil | Nil | 4620 | 4860 | Nil |
|  | 9000 | Nil | 5460 | 4020 | Nil | Nil | 4500 | 4740 | Nil |
|  | 9600 | Nil | 5400 | 3960 | Nil | Nil | 4440 | 4680 | Nil |
|  | 10200 | Nil | 5400 | 3960 | Nil | Nil | 4380 | 4560 | Nil |
|  | 10800 | Nil | 5400 | 3960 | Nil | Nil | 4380 | 4560 | Nil |

FRL $=60$ minutes

| Tmax | $\mathbf{7 5 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil |
|  | 3600 | Nil |
|  | 4200 | Nil |
|  | 4800 | Nil |
|  | 5400 | Nil | Nil | 5100 | Nil | Nil | Nil | Nil | Nil |
|  | 6000 | Nil | Nil | 4860 | Nil | Nil | Nil | Nil | Nil |
|  | 6600 | Nil | 6300 | 4740 | Nil | Nil | 5880 | 5460 | Nil |
|  | 7200 | Nil | 6180 | 4680 | Nil | Nil | 5520 | 5160 | Nil |
|  | 7800 | Nil | 6120 | 4560 | Nil | Nil | 5340 | 4980 | Nil |
|  | 8400 | Nil | 6060 | 4500 | Nil | Nil | 5220 | 4860 | Nil |
|  | 9000 | Nil | 6000 | 4500 | Nil | Nil | 5100 | 4740 | Nil |
|  | 9600 | Nil | 6000 | 4440 | Nil | Nil | 4980 | 4680 | Nil |
|  | 10200 | Nil | 5940 | 4380 | Nil | Nil | 4920 | 4560 | Nil |
|  | 10800 | Nil | 5940 | 4380 | Nil | Nil | 4860 | 4560 | Nil |


| Tmax | $\mathbf{7 0 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil |
|  | 3600 | Nil |
|  | 4200 | Nil |
|  | 4800 | Nil |
|  | 5400 | Nil |
|  | 6000 | Nil | Nil | 5700 | Nil | Nil | Nil | Nil | Nil |
|  | 6600 | Nil | Nil | 5460 | Nil | Nil | Nil | Nil | Nil |
|  | 7200 | Nil | 7020 | 5340 | Nil | Nil | 6420 | 7080 | Nil |
|  | 7800 | Nil | 6960 | 5220 | Nil | Nil | 6120 | 6660 | Nil |
|  | 8400 | Nil | 6840 | 5160 | Nil | Nil | 5940 | 6360 | Nil |
|  | 9000 | Nil | 6780 | 5100 | Nil | Nil | 5820 | 6180 | Nil |
|  | 9600 | Nil | 6720 | 5040 | Nil | Nil | 5700 | 6060 | Nil |
|  | 10200 | Nil | 6660 | 4980 | Nil | Nil | 5580 | 5940 | Nil |
|  | 10800 | Nil | 6600 | 4980 | Nil | Nil | 5520 | 5820 | Nil |

$F R L=60$ minutes

| Tmax | $\mathbf{6 5 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil |
|  | 3600 | Nil |
|  | 4200 | Nil |
|  | 4800 | Nil |
|  | 5400 | Nil |
|  | 6000 | Nil |
|  | 6600 | Nil | Nil | 6540 | Nil | Nil | Nil | Nil | Nil |
|  | 7200 | Nil | Nil | 6300 | Nil | Nil | Nil | Nil | Nil |
|  | 7800 | Nil | Nil | 6180 | Nil | Nil | 7080 | Nil | Nil |
|  | 8400 | Nil | 7920 | 6060 | Nil | Nil | 6840 | 7500 | Nil |
|  | 9000 | Nil | 7800 | 5940 | Nil | Nil | 6660 | 7260 | Nil |
|  | 9600 | Nil | 7740 | 5880 | Nil | Nil | 6540 | 7080 | Nil |
|  | 10200 | Nil | 7620 | 5820 | Nil | Nil | 6420 | 6900 | Nil |
|  | 10800 | Nil | 7560 | 5760 | Nil | Nil | 6360 | 6780 | Nil |


| Tmax | $\mathbf{6 0 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil |
|  | 3600 | Nil |
|  | 4200 | Nil |
|  | 4800 | Nil |
|  | 5400 | Nil |
|  | 6000 | Nil |
|  | 6600 | Nil |
|  | 7200 | Nil |
|  | 7800 | Nil | Nil | 7440 | Nil | Nil | Nil | Nil | Nil |
|  | 8400 | Nil | Nil | 7260 | Nil | Nil | 7980 | Nil | Nil |
|  | 9000 | Nil | Nil | 7140 | Nil | Nil | 7860 | 8520 | Nil |
|  | 9600 | Nil | 9060 | 7020 | Nil | Nil | 7620 | 8280 | Nil |
|  | 10200 | Nil | 9000 | 6960 | Nil | Nil | 7500 | 8160 | Nil |
|  | 10800 | Nil | 8880 | 6900 | Nil | Nil | 7440 | 7980 | Nil |

FRL $=60$ minutes

| Tmax | $\mathbf{5 5 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil |
|  | 3600 | Nil |
|  | 4200 | Nil |
|  | 4800 | Nil |
|  | 5400 | Nil |
|  | 6000 | Nil |
|  | 6600 | Nil |
|  | 7200 | Nil |
|  | 7800 | Nil |
|  | 8400 | Nil |
|  | 9000 | Nil | Nil | 8700 | Nil | Nil | 9000 | Nil | Nil |
|  | 9600 | Nil | Nil | 8580 | Nil | Nil | 8880 | Nil | Nil |
|  | 10200 | Nil | Nil | 8520 | Nil | Nil | 8820 | 9540 | Nil |
|  | 10800 | Nil | 10560 | 8460 | Nil | Nil | 8700 | 9420 | Nil |


| Tmax | $\mathbf{5 0 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil |
|  | 3600 | Nil |
|  | 4200 | Nil |
|  | 4800 | Nil |
|  | 5400 | Nil |
|  | 6000 | Nil |
|  | 6600 | Nil |
|  | 7200 | Nil |
|  | 7800 | Nil |
|  | 8400 | Nil |
|  | 9000 | Nil |
|  | 9600 | Nil |
|  | 10200 | Nil | Nil | Nil | Nil | Nil | 10140 | Nil | Nil |
|  | 10800 | Nil | Nil | 10260 | Nil | Nil | 10140 | Nil | Nil |
|  |  |  |  |  |  |  |  |  |  |
|  | STD |  |  |  |  |  |  |  |  |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  |  | Fail |

FRL $=90$ minutes

| Tmax | $\mathbf{1 2 5 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil | 120 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 1800 | Nil | 120 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 2400 | Nil | 120 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 3000 | Nil | 120 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 3600 | Nil | 120 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 4200 | Nil | 120 | 4200 | Nil | Nil | Nil | Nil | Nil |
|  | 4800 | Nil | 120 | 4080 | Nil | Nil | Nil | Nil | Nil |
|  | 5400 | Nil | 120 | 3960 | Nil | Nil | Nil | Nil | Nil |
|  | 6000 | Nil | 120 | 3900 | 4020 | 4140 | 5160 | 5100 | Nil |
|  | 6600 | Nil | 120 | 3840 | 3660 | 3660 | 4740 | 4680 | 4380 |
|  | 7200 | Nil | 120 | 3780 | 3480 | 3420 | 4500 | 4440 | 3960 |
|  | 7800 | 2160 | 120 | 3780 | 3360 | 3300 | 4380 | 4260 | 3780 |
|  | 8400 | 1980 | 120 | 3720 | 3240 | 3180 | 4260 | 4140 | 3660 |
|  | 9000 | 1920 | 120 | 3720 | 3180 | 3120 | 4200 | 4080 | 3600 |
|  | 9600 | 1920 | 120 | 3720 | 3120 | 3060 | 4140 | 4020 | 3480 |
|  | 10200 | 1860 | 120 | 3660 | 3060 | 3060 | 4080 | 3960 | 3480 |
|  | 10800 | 1860 | 120 | 3660 | 3060 | 3000 | 4020 | 3900 | 3420 |


| Tmax | $\mathbf{1 2 0 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil | 180 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 1800 | Nil | 120 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 2400 | Nil | 120 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 3000 | Nil | 120 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 3600 | Nil | 120 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 4200 | Nil | 120 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 4800 | Nil | 120 | 4260 | Nil | Nil | Nil | Nil | Nil |
|  | 5400 | Nil | 120 | 4140 | Nil | Nil | Nil | Nil | Nil |
|  | 6000 | Nil | 120 | 4020 | Nil | Nil | 5700 | 5820 | Nil |
|  | 6600 | Nil | 120 | 3960 | 4260 | 4500 | 5100 | 5100 | Nil |
|  | 7200 | Nil | 120 | 3960 | 3900 | 3960 | 4860 | 4800 | 4740 |
|  | 7800 | Nil | 120 | 3900 | 3720 | 3720 | 4680 | 4560 | 4260 |
|  | 8400 | Nil | 120 | 3900 | 3600 | 3540 | 4560 | 4440 | 4080 |
|  | 9000 | Nil | 120 | 3840 | 3480 | 3480 | 4440 | 4320 | 3900 |
|  | 9600 | Nil | 120 | 3840 | 3420 | 3420 | 4380 | 4260 | 3840 |
|  | 10200 | 2280 | 120 | 3840 | 3360 | 3360 | 4320 | 4200 | 3720 |
|  | 10800 | 2160 | 120 | 3780 | 3300 | 3300 | 4260 | 4140 | 3660 |

FRL $=90$ minutes

| Tmax | $\mathbf{1 1 5 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil | 240 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 1800 | Nil | 180 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 2400 | Nil | 180 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 3000 | Nil | 180 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 3600 | Nil | 180 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 4200 | Nil | 180 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 4800 | Nil | 180 | 4500 | Nil | Nil | Nil | Nil | Nil |
|  | 5400 | Nil | 180 | 4320 | Nil | Nil | Nil | Nil | Nil |
|  | 6000 | Nil | 180 | 4260 | Nil | Nil | Nil | Nil | Nil |
|  | 6600 | Nil | 180 | 4140 | Nil | Nil | 5640 | 5640 | Nil |
|  | 7200 | Nil | 180 | 4140 | 4620 | Nil | 5220 | 5160 | Nil |
|  | 7800 | Nil | 180 | 4080 | 4260 | 4380 | 4980 | 4920 | Nil |
|  | 8400 | Nil | 180 | 4020 | 4020 | 4080 | 4860 | 4740 | 4680 |
|  | 9000 | Nil | 180 | 4020 | 3900 | 3900 | 4740 | 4620 | 4440 |
|  | 9600 | Nil | 180 | 3960 | 3780 | 3780 | 4620 | 4560 | 4260 |
|  | 10200 | Nil | 180 | 3960 | 3720 | 3720 | 4560 | 4440 | 4140 |
|  | 10800 | Nil | 180 | 3960 | 3660 | 3660 | 4500 | 4380 | 4080 |


| Tmax | $\mathbf{1 1 0 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil | 300 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 2400 | Nil | 240 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 3000 | Nil | 240 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 3600 | Nil | 240 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 4200 | Nil | 240 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 4800 | Nil | 180 | 4800 | Nil | Nil | Nil | Nil | Nil |
|  | 5400 | Nil | 180 | 4560 | Nil | Nil | Nil | Nil | Nil |
|  | 6000 | Nil | 180 | 4440 | Nil | Nil | Nil | Nil | Nil |
|  | 6600 | Nil | 180 | 4380 | Nil | Nil | 6300 | 6480 | Nil |
|  | 7200 | Nil | 180 | 4320 | Nil | Nil | 5700 | 5700 | Nil |
|  | 7800 | Nil | 180 | 4260 | 5220 | Nil | 5400 | 5400 | Nil |
|  | 8400 | Nil | 180 | 4200 | 4740 | 5100 | 5220 | 5160 | Nil |
|  | 9000 | Nil | 180 | 4200 | 4500 | 4620 | 5100 | 4980 | 5400 |
|  | 9600 | Nil | 180 | 4140 | 4320 | 4440 | 4980 | 4860 | 4920 |
|  | 10200 | Nil | 180 | 4140 | 4200 | 4260 | 4860 | 4800 | 4680 |
|  | 10800 | Nil | 180 | 4140 | 4080 | 4140 | 4800 | 4740 | 4560 |

FRL $=90$ minutes

| Tmax | $\mathbf{1 0 5 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil | 420 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 3600 | Nil | 360 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 4200 | Nil | 300 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 4800 | Nil | 300 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 5400 | Nil | 300 | 4860 | Nil | Nil | Nil | Nil | Nil |
|  | 6000 | Nil | 300 | 4740 | Nil | Nil | Nil | Nil | Nil |
|  | 6600 | Nil | 300 | 4620 | Nil | Nil | Nil | Nil | Nil |
|  | 7200 | Nil | 300 | 4560 | Nil | Nil | 6360 | 6420 | Nil |
|  | 7800 | Nil | 300 | 4500 | Nil | Nil | 5880 | 5940 | Nil |
|  | 8400 | Nil | 300 | 4440 | Nil | Nil | 5640 | 5640 | Nil |
|  | 9000 | Nil | 300 | 4380 | 5460 | Nil | 5460 | 5460 | Nil |
|  | 9600 | Nil | 300 | 4380 | 5100 | 5520 | 5340 | 5280 | Nil |
|  | 10200 | Nil | 300 | 4380 | 4860 | 5100 | 5220 | 5160 | 6060 |
|  | 10800 | Nil | 300 | 4320 | 4680 | 4860 | 5160 | 5100 | 5460 |


| Tmax | $\mathbf{1 0 0 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil |
|  | 3600 | Nil |
|  | 4200 | Nil |
|  | 4800 | Nil | 4800 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 5400 | Nil | 4740 | 5280 | Nil | Nil | Nil | Nil | Nil |
|  | 6000 | Nil | 540 | 5040 | Nil | Nil | Nil | Nil | Nil |
|  | 6600 | Nil | 540 | 4920 | Nil | Nil | Nil | Nil | Nil |
|  | 7200 | Nil | 480 | 4860 | Nil | Nil | Nil | Nil | Nil |
|  | 7800 | Nil | 480 | 4740 | Nil | Nil | 6540 | 6600 | Nil |
|  | 8400 | Nil | 480 | 4680 | Nil | Nil | 6180 | 6180 | Nil |
|  | 9000 | Nil | 480 | 4680 | Nil | Nil | 5940 | 5940 | Nil |
|  | 9600 | Nil | 480 | 4620 | 6900 | Nil | 5820 | 5760 | Nil |
|  | 10200 | Nil | 420 | 4620 | 6000 | Nil | 5640 | 5640 | Nil |
|  | 10800 | Nil | 420 | 4560 | 5640 | 6540 | 5580 | 5520 | Nil |

FRL $=90$ minutes

| Tmax | $\mathbf{9 5 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil |
|  | 3600 | Nil |
|  | 4200 | Nil |
|  | 4800 | Nil |
|  | 5400 | Nil | 5040 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 6000 | Nil | 4980 | 5520 | Nil | Nil | Nil | Nil | Nil |
|  | 6600 | Nil | 4980 | 5340 | Nil | Nil | Nil | Nil | Nil |
|  | 7200 | Nil | 4920 | 5220 | Nil | Nil | Nil | Nil | Nil |
|  | 7800 | Nil | 4860 | 5100 | Nil | Nil | 7440 | 7680 | Nil |
|  | 8400 | Nil | 4860 | 5040 | Nil | Nil | 6840 | 6960 | Nil |
|  | 9000 | Nil | 4860 | 4980 | Nil | Nil | 6540 | 6600 | Nil |
|  | 9600 | Nil | 4800 | 4920 | Nil | Nil | 6360 | 6360 | Nil |
|  | 10200 | Nil | 4800 | 4920 | Nil | Nil | 6180 | 6180 | Nil |
|  | 10800 | Nil | 4800 | 4860 | Nil | Nil | 6060 | 6000 | Nil |


| Tmax | $\mathbf{9 0 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil |
|  | 3600 | Nil |
|  | 4200 | Nil |
|  | 4800 | Nil |
|  | 5400 | Nil | 5400 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 6000 | Nil | 5340 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 6600 | Nil | 5280 | 5880 | Nil | Nil | Nil | Nil | Nil |
|  | 7200 | Nil | 5280 | 5700 | Nil | Nil | Nil | Nil | Nil |
|  | 7800 | Nil | 5220 | 5580 | Nil | Nil | Nil | Nil | Nil |
|  | 8400 | Nil | 5160 | 5460 | Nil | Nil | 7800 | 8040 | Nil |
|  | 9000 | Nil | 5160 | 5400 | Nil | Nil | 7320 | 7440 | Nil |
|  | 9600 | Nil | 5160 | 5340 | Nil | Nil | 7020 | 7080 | Nil |
|  | 10200 | Nil | 5100 | 5280 | Nil | Nil | 6780 | 6840 | Nil |
|  | 10800 | Nil | 5100 | 5220 | Nil | Nil | 6660 | 6660 | Nil |

FRL $=90$ minutes

| Tmax | $\mathbf{8 5 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil |
|  | 3600 | Nil |
|  | 4200 | Nil |
|  | 4800 | Nil |
|  | 5400 | Nil |
|  | 6000 | Nil | 5820 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 6600 | Nil | 5760 | 6600 | Nil | Nil | Nil | Nil | Nil |
|  | 7200 | Nil | 5700 | 6300 | Nil | Nil | Nil | Nil | Nil |
|  | 7800 | Nil | 5640 | 6120 | Nil | Nil | Nil | Nil | Nil |
|  | 8400 | Nil | 5580 | 6000 | Nil | Nil | Nil | Nil | Nil |
|  | 9000 | Nil | 5580 | 5880 | Nil | Nil | 8280 | 8580 | Nil |
|  | 9600 | Nil | 5520 | 5820 | Nil | Nil | 7860 | 8040 | Nil |
|  | 10200 | Nil | 5520 | 5760 | Nil | Nil | 7560 | 7680 | Nil |
|  | 10800 | Nil | 5460 | 5700 | Nil | Nil | 7320 | 7440 | Nil |


| Tmax | $\mathbf{8 0 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil |
|  | 3600 | Nil |
|  | 4200 | Nil |
|  | 4800 | Nil |
|  | 5400 | Nil |
|  | 6000 | Nil |
|  | 6600 | Nil | 6300 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 7200 | Nil | 6240 | 7200 | Nil | Nil | Nil | Nil | Nil |
|  | 7800 | Nil | 6180 | 6900 | Nil | Nil | Nil | Nil | Nil |
|  | 8400 | Nil | 6120 | 6720 | Nil | Nil | Nil | Nil | Nil |
|  | 9000 | Nil | 6060 | 6600 | Nil | Nil | Nil | Nil | Nil |
|  | 9600 | Nil | 6000 | 6480 | Nil | Nil | 9000 | 9360 | Nil |
|  | 10200 | Nil | 6000 | 6360 | Nil | Nil | 8520 | 8760 | Nil |
|  | 10800 | Nil | 5940 | 6300 | Nil | Nil | 8220 | 8400 | Nil |

FRL $=90$ minutes

| Tmax | $\mathbf{7 5 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil |
|  | 3600 | Nil |
|  | 4200 | Nil |
|  | 4800 | Nil |
|  | 5400 | Nil |
|  | 6000 | Nil |
|  | 6600 | Nil |
|  | 7200 | Nil | 6900 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 7800 | Nil | 6840 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 8400 | Nil | 6780 | 7740 | Nil | Nil | Nil | Nil | Nil |
|  | 9000 | Nil | 6720 | 7500 | Nil | Nil | Nil | Nil | Nil |
|  | 9600 | Nil | 6660 | 7320 | Nil | Nil | Nil | Nil | Nil |
|  | 10200 | Nil | 6600 | 7200 | Nil | Nil | 9840 | Nil | Nil |
|  | 10800 | Nil | 6540 | 7140 | Nil | Nil | 9420 | 9720 | Nil |


| Tmax | 700 |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil |
|  | 3600 | Nil |
|  | 4200 | Nil |
|  | 4800 | Nil |
|  | 5400 | Nil |
|  | 6000 | Nil |
|  | 6600 | Nil |
|  | 7200 | Nil |
|  | 7800 | Nil | 7740 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 8400 | Nil | 7620 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 9000 | Nil | 7560 | 8940 | Nil | Nil | Nil | Nil | Nil |
|  | 9600 | Nil | 7500 | 8640 | Nil | Nil | Nil | Nil | Nil |
|  | 10200 | Nil | 7440 | 8400 | Nil | Nil | Nil | Nil | Nil |
|  | 10800 | Nil | 7380 | 8220 | Nil | Nil | Nil | Nil | Nil |

FRL $=90$ minutes

| Tmax | $\mathbf{6 5 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil |
|  | 3600 | Nil |
|  | 4200 | Nil |
|  | 4800 | Nil |
|  | 5400 | Nil |
|  | 6000 | Nil |
|  | 6600 | Nil |
|  | 7200 | Nil |
|  | 7800 | Nil |
|  | 8400 | Nil |
|  | 9000 | Nil | 8760 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 9600 | Nil | 8640 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 10200 | Nil | 8580 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 10800 | Nil | 8460 | 9960 | Nil | Nil | Nil | Nil | Nil |


| Tmax | $\mathbf{6 0 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil |
|  | 3600 | Nil |
|  | 4200 | Nil |
|  | 4800 | Nil |
|  | 5400 | Nil |
|  | 6000 | Nil |
|  | 6600 | Nil |
|  | 7200 | Nil |
|  | 7800 | Nil |
|  | 8400 | Nil |
|  | 9000 | Nil |
|  | 9600 | Nil |
|  | 10200 | Nil | 10140 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 10800 | Nil | 10020 | Nil | Nil | Nil | Nil | Nil | Nil |

FRL $=90$ minutes

| Tmax | $\mathbf{5 5 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil |
|  | 3600 | Nil |
|  | 4200 | Nil |
|  | 4800 | Nil |
|  | 5400 | Nil |
|  | 6000 | Nil |
|  | 6600 | Nil |
|  | 7200 | Nil |
|  | 7800 | Nil |
|  | 8400 | Nil |
|  | 9000 | Nil |
|  | 9600 | Nil |
|  | 10200 | Nil |
|  | 10800 | Nil |


| Tmax | $\mathbf{5 0 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil |
|  | 3600 | Nil |
|  | 4200 | Nil |
|  | 4800 | Nil |
|  | 5400 | Nil |
|  | 6000 | Nil |
|  | 6600 | Nil |
|  | 7200 | Nil |
|  | 7800 | Nil |
|  | 8400 | Nil |
|  | 9000 | Nil |
|  | 9600 | Nil |
|  | 10200 | Nil |
|  | 10800 | Nil |
| Tmax |  | STD |  |  |  |  |  |  |  |
|  | t500 | SSW | MW |  | CW |  | CB | CC | SB |
|  |  | Fail |

FRL $=120$ minutes

| Tmax | $\mathbf{1 2 5 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil |
|  | 3600 | Nil |
|  | 4200 | Nil |
|  | 4800 | Nil |
|  | 5400 | Nil |
|  | 6000 | Nil | 5820 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 6600 | Nil | 5820 | 5940 | Nil | Nil | Nil | Nil | Nil |
|  | 7200 | Nil | 5760 | 5820 | Nil | Nil | Nil | Nil | Nil |
|  | 7800 | Nil | 5760 | 5700 | Nil | Nil | Nil | Nil | Nil |
|  | 8400 | Nil | 5760 | 5580 | Nil | Nil | 7440 | 7980 | Nil |
|  | 9000 | Nil | 5700 | 5520 | Nil | 6120 | 6960 | 7200 | Nil |
|  | 9600 | Nil | 5700 | 5520 | Nil | 5580 | 6660 | 6840 | Nil |
|  | 10200 | Nil | 5700 | 5460 | Nil | 5280 | 6480 | 6600 | 6720 |
|  | 10800 | Nil | 5700 | 5400 | Nil | 5100 | 6300 | 6420 | 6300 |


| Tmax | $\mathbf{1 2 0 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil |
|  | 3600 | Nil |
|  | 4200 | Nil |
|  | 4800 | Nil |
|  | 5400 | Nil |
|  | 6000 | Nil |
|  | 6600 | Nil | 6000 | 6240 | Nil | Nil | Nil | Nil | Nil |
|  | 7200 | Nil | 6000 | 6060 | Nil | Nil | Nil | Nil | Nil |
|  | 7800 | Nil | 5940 | 5940 | Nil | Nil | Nil | Nil | Nil |
|  | 8400 | Nil | 5940 | 5880 | Nil | Nil | 8280 | Nil | Nil |
|  | 9000 | Nil | 5880 | 5760 | Nil | Nil | 7560 | 7980 | Nil |
|  | 9600 | Nil | 5880 | 5700 | Nil | Nil | 7200 | 7440 | Nil |
|  | 10200 | Nil | 5880 | 5700 | Nil | 6240 | 6900 | 7080 | Nil |
|  | 10800 | Nil | 5880 | 5640 | Nil | 5820 | 6720 | 6840 | 7860 |

FRL $=120$ minutes

| Tmax | $\mathbf{1 1 5 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil |
|  | 3600 | Nil |
|  | 4200 | Nil |
|  | 4800 | Nil |
|  | 5400 | Nil |
|  | 6000 | Nil |
|  | 6600 | Nil | 6240 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 7200 | Nil | 6180 | 6420 | Nil | Nil | Nil | Nil | Nil |
|  | 7800 | Nil | 6180 | 6240 | Nil | Nil | Nil | Nil | Nil |
|  | 8400 | Nil | 6120 | 6120 | Nil | Nil | Nil | Nil | Nil |
|  | 9000 | Nil | 6120 | 6060 | Nil | Nil | 8340 | Nil | Nil |
|  | 9600 | Nil | 6120 | 6000 | Nil | Nil | 7800 | 8220 | Nil |
|  | 10200 | Nil | 6060 | 5940 | Nil | Nil | 7440 | 7740 | Nil |
|  | 10800 | Nil | 6060 | 5880 | Nil | 7500 | 7260 | 7440 | Nil |


| Tmax | $\mathbf{1 1 0 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil |
|  | 3600 | Nil |
|  | 4200 | Nil |
|  | 4800 | Nil |
|  | 5400 | Nil |
|  | 6000 | Nil |
|  | 6600 | Nil |
|  | 7200 | Nil | 6480 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 7800 | Nil | 6420 | 6660 | Nil | Nil | Nil | Nil | Nil |
|  | 8400 | Nil | 6420 | 6480 | Nil | Nil | Nil | Nil | Nil |
|  | 9000 | Nil | 6360 | 6360 | Nil | Nil | Nil | Nil | Nil |
|  | 9600 | Nil | 6360 | 6300 | Nil | Nil | 8580 | 9360 | Nil |
|  | 10200 | Nil | 6300 | 6240 | Nil | Nil | 8100 | 8520 | Nil |
|  | 10800 | Nil | 6300 | 6180 | Nil | Nil | 7800 | 8100 | Nil |

FRL $=120$ minutes

| Tmax | $\mathbf{1 0 5 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil |
|  | 3600 | Nil |
|  | 4200 | Nil |
|  | 4800 | Nil |
|  | 5400 | Nil |
|  | 6000 | Nil |
|  | 6600 | Nil |
|  | 7200 | Nil | 6780 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 7800 | Nil | 6720 | 7140 | Nil | Nil | Nil | Nil | Nil |
|  | 8400 | Nil | 6720 | 6900 | Nil | Nil | Nil | Nil | Nil |
|  | 9000 | Nil | 6660 | 6780 | Nil | Nil | Nil | Nil | Nil |
|  | 9600 | Nil | 6660 | 6660 | Nil | Nil | Nil | Nil | Nil |
|  | 10200 | Nil | 6600 | 6600 | Nil | Nil | 9000 | 9720 | Nil |
|  | 10800 | Nil | 6600 | 6540 | Nil | Nil | 8520 | 9000 | Nil |


| Tmax | $\mathbf{1 0 0 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil |
|  | 3600 | Nil |
|  | 4200 | Nil |
|  | 4800 | Nil |
|  | 5400 | Nil |
|  | 6000 | Nil |
|  | 6600 | Nil |
|  | 7200 | Nil | 7140 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 7800 | Nil | 7080 | 7740 | Nil | Nil | Nil | Nil | Nil |
|  | 8400 | Nil | 7020 | 7440 | Nil | Nil | Nil | Nil | Nil |
|  | 9000 | Nil | 7020 | 7260 | Nil | Nil | Nil | Nil | Nil |
|  | 9600 | Nil | 6960 | 7140 | Nil | Nil | Nil | Nil | Nil |
|  | 10200 | Nil | 6960 | 7020 | Nil | Nil | 10200 | Nil | Nil |
|  | 10800 | Nil | 6900 | 6960 | Nil | Nil | 9480 | 10260 | Nil |

FRL $=120$ minutes

| Tmax | $\mathbf{9 5 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil |
|  | 3600 | Nil |
|  | 4200 | Nil |
|  | 4800 | Nil |
|  | 5400 | Nil |
|  | 6000 | Nil |
|  | 6600 | Nil |
|  | 7200 | Nil |
|  | 7800 | Nil | 7500 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 8400 | Nil | 7440 | 8220 | Nil | Nil | Nil | Nil | Nil |
|  | 9000 | Nil | 7440 | 7920 | Nil | Nil | Nil | Nil | Nil |
|  | 9600 | Nil | 7380 | 7740 | Nil | Nil | Nil | Nil | Nil |
|  | 10200 | Nil | 7380 | 7560 | Nil | Nil | Nil | Nil | Nil |
|  | 10800 | Nil | 7320 | 7440 | Nil | Nil | 10800 | Nil | Nil |


| Tmax | $\mathbf{9 0 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil |
|  | 3600 | Nil |
|  | 4200 | Nil |
|  | 4800 | Nil |
|  | 5400 | Nil |
|  | 6000 | Nil |
|  | 6600 | Nil |
|  | 7200 | Nil |
|  | 7800 | Nil |
|  | 8400 | Nil | 7980 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 9000 | Nil | 7980 | 8880 | Nil | Nil | Nil | Nil | Nil |
|  | 9600 | Nil | 7920 | 8580 | Nil | Nil | Nil | Nil | Nil |
|  | 10200 | Nil | 7860 | 8340 | Nil | Nil | Nil | Nil | Nil |
|  | 10800 | Nil | 7800 | 8160 | Nil | Nil | Nil | Nil | Nil |

FRL $=120$ minutes

| Tmax | $\mathbf{8 5 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil |
|  | 3600 | Nil |
|  | 4200 | Nil |
|  | 4800 | Nil |
|  | 5400 | Nil |
|  | 6000 | Nil |
|  | 6600 | Nil |
|  | 7200 | Nil |
|  | 7800 | Nil |
|  | 8400 | Nil |
|  | 9000 | Nil | 8640 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 9600 | Nil | 8580 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 10200 | Nil | 8520 | 9420 | Nil | Nil | Nil | Nil | Nil |
|  | 10800 | Nil | 8460 | 9120 | Nil | Nil | Nil | Nil | Nil |


| Tmax | $\mathbf{8 0 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil |
|  | 3600 | Nil |
|  | 4200 | Nil |
|  | 4800 | Nil |
|  | 5400 | Nil |
|  | 6000 | Nil |
|  | 6600 | Nil |
|  | 7200 | Nil |
|  | 7800 | Nil |
|  | 8400 | Nil |
|  | 9000 | Nil |
|  | 9600 | Nil | 9420 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 10200 | Nil | 9360 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 10800 | Nil | 9300 | 10620 | Nil | Nil | Nil | Nil | Nil |

FRL $=120$ minutes

| Tmax | 750 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil |
|  | 3600 | Nil |
|  | 4200 | Nil |
|  | 4800 | Nil |
|  | 5400 | Nil |
|  | 6000 | Nil |
|  | 6600 | Nil |
|  | 7200 | Nil |
|  | 7800 | Nil |
|  | 8400 | Nil |
|  | 9000 | Nil |
|  | 9600 | Nil |
|  | 10200 | Nil |
|  | 10800 | Nil | 10380 | Nil | Nil | Nil | Nil | Nil | Nil |
| Tmax | 700 |  |  |  |  |  |  |  |  |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil |
|  | 3600 | Nil |
|  | 4200 | Nil |
|  | 4800 | Nil |
|  | 5400 | Nil |
|  | 6000 | Nil |
|  | 6600 | Nil |
|  | 7200 | Nil |
|  | 7800 | Nil |
|  | 8400 | Nil |
|  | 9000 | Nil |
|  | 9600 | Nil |
|  | 10200 | Nil |
|  | 10800 | Nil |

FRL $=120$ minutes

| Tmax | $\mathbf{6 5 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil |
|  | 3600 | Nil |
|  | 4200 | Nil |
|  | 4800 | Nil |
|  | 5400 | Nil |
|  | 6000 | Nil |
|  | 6600 | Nil |
|  | 7200 | Nil |
|  | 7800 | Nil |
|  | 8400 | Nil |
|  | 9000 | Nil |
|  | 9600 | Nil |
|  | 10200 | Nil |
|  | 10800 | Nil |


| Tmax | $\mathbf{6 0 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil |
|  | 3600 | Nil |
|  | 4200 | Nil |
|  | 4800 | Nil |
|  | 5400 | Nil |
|  | 6000 | Nil |
|  | 6600 | Nil |
|  | 7200 | Nil |
|  | 7800 | Nil |
|  | 8400 | Nil |
|  | 9000 | Nil |
|  | 9600 | Nil |
|  | 10200 | Nil |
|  | 10800 | Nil |

FRL $=120$ minutes

| Tmax | $\mathbf{5 5 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil |
|  | 3600 | Nil |
|  | 4200 | Nil |
|  | 4800 | Nil |
|  | 5400 | Nil |
|  | 6000 | Nil |
|  | 6600 | Nil |
|  | 7200 | Nil |
|  | 7800 | Nil |
|  | 8400 | Nil |
|  | 9000 | Nil |
|  | 9600 | Nil |
|  | 10200 | Nil |
|  | 10800 | Nil |


| Tmax | $\mathbf{5 0 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil |
|  | 3600 | Nil |
|  | 4200 | Nil |
|  | 4800 | Nil |
|  | 5400 | Nil |
|  | 6000 | Nil |
|  | 6600 | Nil |
|  | 7200 | Nil |
|  | 7800 | Nil |
|  | 8400 | Nil |
|  | 9000 | Nil |
|  | 9600 | Nil |
|  | 10200 | Nil |
|  | 10800 | Nil |
|  |  |  |  |  |  |  |  |  |  |
| Tmax | STD |  |  |  |  |  |  |  |  |
|  | 500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  |  | Fail |

$F R L=180$ minutes

| Tmax | $\mathbf{1 2 5 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil |
|  | 3600 | Nil |
|  | 4200 | Nil |
|  | 4800 | Nil |
|  | 5400 | Nil |
|  | 6000 | Nil |
|  | 6600 | Nil |
|  | 7200 | Nil |
|  | 7800 | Nil |
|  | 8400 | Nil |
|  | 9000 | Nil |
|  | 9600 | Nil | 9060 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 10200 | Nil | 9000 | 10020 | Nil | Nil | Nil | Nil | Nil |
|  | 10800 | Nil | 9000 | 9780 | Nil | Nil | Nil | Nil | Nil |


| Tmax | $\mathbf{1 2 0 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil |
|  | 3600 | Nil |
|  | 4200 | Nil |
|  | 4800 | Nil |
|  | 5400 | Nil |
|  | 6000 | Nil |
|  | 6600 | Nil |
|  | 7200 | Nil |
|  | 7800 | Nil |
|  | 8400 | Nil |
|  | 9000 | Nil |
|  | 9600 | Nil | 9360 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 10200 | Nil | 9360 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 10800 | Nil | 9300 | 10380 | Nil | Nil | Nil | Nil | Nil |

$F R L=180$ minutes

| Tmax | $\mathbf{1 1 5 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil |
|  | 3600 | Nil |
|  | 4200 | Nil |
|  | 4800 | Nil |
|  | 5400 | Nil |
|  | 6000 | Nil |
|  | 6600 | Nil |
|  | 7200 | Nil |
|  | 7800 | Nil |
|  | 8400 | Nil |
|  | 9000 | Nil |
|  | 9600 | Nil |
|  | 10200 | Nil | 9720 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 10800 | Nil | 9660 | Nil | Nil | Nil | Nil | Nil | Nil |


| Tmax | $\mathbf{1 1 0 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil |
|  | 3600 | Nil |
|  | 4200 | Nil |
|  | 4800 | Nil |
|  | 5400 | Nil |
|  | 6000 | Nil |
|  | 6600 | Nil |
|  | 7200 | Nil |
|  | 7800 | Nil |
|  | 8400 | Nil |
|  | 9000 | Nil |
|  | 9600 | Nil |
|  | 10200 | Nil | 10140 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 10800 | Nil | 10080 | Nil | Nil | Nil | Nil | Nil | Nil |

$F R L=180$ minutes

| Tmax | $\mathbf{1 0 5 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil |
|  | 3600 | Nil |
|  | 4200 | Nil |
|  | 4800 | Nil |
|  | 5400 | Nil |
|  | 6000 | Nil |
|  | 6600 | Nil |
|  | 7200 | Nil |
|  | 7800 | Nil |
|  | 8400 | Nil |
|  | 9000 | Nil |
|  | 9600 | Nil |
|  | 10200 | Nil |
|  | 10800 | Nil | 10620 | Nil | Nil | Nil | Nil | Nil | Nil |


| Tmax | $\mathbf{1 0 0 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil |
|  | 3600 | Nil |
|  | 4200 | Nil |
|  | 4800 | Nil |
|  | 5400 | Nil |
|  | 6000 | Nil |
|  | 6600 | Nil |
|  | 7200 | Nil |
|  | 7800 | Nil |
|  | 8400 | Nil |
|  | 9000 | Nil |
|  | 9600 | Nil |
|  | 10200 | Nil |
|  | 10800 | Nil |

$F R L=180$ minutes

| Tmax | $\mathbf{9 5 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil |
|  | 3600 | Nil |
|  | 4200 | Nil |
|  | 4800 | Nil |
|  | 5400 | Nil |
|  | 6000 | Nil |
|  | 6600 | Nil |
|  | 7200 | Nil |
|  | 7800 | Nil |
|  | 8400 | Nil |
|  | 9000 | Nil |
|  | 9600 | Nil |
|  | 10200 | Nil |
|  | 10800 | Nil |


| Tmax | $\mathbf{9 0 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil |
|  | 3600 | Nil |
|  | 4200 | Nil |
|  | 4800 | Nil |
|  | 5400 | Nil |
|  | 6000 | Nil |
|  | 6600 | Nil |
|  | 7200 | Nil |
|  | 7800 | Nil |
|  | 8400 | Nil |
|  | 9000 | Nil |
|  | 9600 | Nil |
|  | 10200 | Nil |
|  | 10800 | Nil |

$F R L=180$ minutes

| Tmax | $\mathbf{8 5 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil |
|  | 3600 | Nil |
|  | 4200 | Nil |
|  | 4800 | Nil |
|  | 5400 | Nil |
|  | 6000 | Nil |
|  | 6600 | Nil |
|  | 7200 | Nil |
|  | 7800 | Nil |
|  | 8400 | Nil |
|  | 9000 | Nil |
|  | 9600 | Nil |
|  | 10200 | Nil |
|  | 10800 | Nil |


| Tmax | $\mathbf{8 0 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil |
|  | 3600 | Nil |
|  | 4200 | Nil |
|  | 4800 | Nil |
|  | 5400 | Nil |
|  | 6000 | Nil |
|  | 6600 | Nil |
|  | 7200 | Nil |
|  | 7800 | Nil |
|  | 8400 | Nil |
|  | 9000 | Nil |
|  | 9600 | Nil |
|  | 10200 | Nil |
|  | 10800 | Nil |

$F R L=180$ minutes

| Tmax | $\mathbf{7 5 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil |
|  | 3600 | Nil |
|  | 4200 | Nil |
|  | 4800 | Nil |
|  | 5400 | Nil |
|  | 6000 | Nil |
|  | 6600 | Nil |
|  | 7200 | Nil |
|  | 7800 | Nil |
|  | 8400 | Nil |
|  | 9000 | Nil |
|  | 9600 | Nil |
|  | 10200 | Nil |
|  | 10800 | Nil |


| Tmax | $\mathbf{7 0 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil |
|  | 3600 | Nil |
|  | 4200 | Nil |
|  | 4800 | Nil |
|  | 5400 | Nil |
|  | 6000 | Nil |
|  | 6600 | Nil |
|  | 7200 | Nil |
|  | 7800 | Nil |
|  | 8400 | Nil |
|  | 9000 | Nil |
|  | 9600 | Nil |
|  | 10200 | Nil |
|  | 10800 | Nil |

$F R L=180$ minutes

| Tmax | $\mathbf{6 5 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil |
|  | 3600 | Nil |
|  | 4200 | Nil |
|  | 4800 | Nil |
|  | 5400 | Nil |
|  | 6000 | Nil |
|  | 6600 | Nil |
|  | 7200 | Nil |
|  | 7800 | Nil |
|  | 8400 | Nil |
|  | 9000 | Nil |
|  | 9600 | Nil |
|  | 10200 | Nil |
|  | 10800 | Nil |


| Tmax | $\mathbf{6 0 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil |
|  | 3600 | Nil |
|  | 4200 | Nil |
|  | 4800 | Nil |
|  | 5400 | Nil |
|  | 6000 | Nil |
|  | 6600 | Nil |
|  | 7200 | Nil |
|  | 7800 | Nil |
|  | 8400 | Nil |
|  | 9000 | Nil |
|  | 9600 | Nil |
|  | 10200 | Nil |
|  | 10800 | Nil |

FRL $=180$ minutes

| Tmax | $\mathbf{5 5 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil |
|  | 3600 | Nil |
|  | 4200 | Nil |
|  | 4800 | Nil |
|  | 5400 | Nil |
|  | 6000 | Nil |
|  | 6600 | Nil |
|  | 7200 | Nil |
|  | 7800 | Nil |
|  | 8400 | Nil |
|  | 9000 | Nil |
|  | 9600 | Nil |
|  | 10200 | Nil |
|  | 10800 | Nil |


| Tmax | $\mathbf{5 0 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil |
|  | 3600 | Nil |
|  | 4200 | Nil |
|  | 4800 | Nil |
|  | 5400 | Nil |
|  | 6000 | Nil |
|  | 6600 | Nil |
|  | 7200 | Nil |
|  | 7800 | Nil |
|  | 8400 | Nil |
|  | 9000 | Nil |
|  | 9600 | Nil |
|  | 10200 | Nil |
|  | 10800 | Nil |
|  |  |  |  |  |  |  |  |  |  |
| Tmax | STD |  |  |  |  |  |  |  |  |
|  | T |  |  |  |  |  |  |  |  |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  |  | Fail |

## APPENDIX H

## CALCULATION OF FIRE SEVERITIES

## APPENDIX H

## CALCULATION OF FIRE SEVERITIES

PageCalculation of Fire Severities ..... H2
Attachment 1 Fire Severity in Enclosures with Cross Ventilation ..... H33
Attachment 2 Fire Severity in Single Vent Enclosures with Uniform Fire Load ..... H43
Attachment 3 Investigation of the Effect of Fuel Position on Fire Severity in Long Enclosures ..... H76
Attachment 4 CIB Tests of Fire Severity in Single Vent Enclosures with Uniform Fire Load ..... H90

## Introduction

Fires in buildings occur in a virtually infinite variety of enclosure sizes and shapes. In estimating the severity of fires that may occur in an enclosure it is important that the effect of enclosure size, shape and ventilation be understood. In addition the type of fuel may also influence the fire severity.

The severity of a fire in an enclosure for the present purpose is defined as a combination of temperatures reached by the fire gases and the duration of those temperatures. In general, the gas temperature varies continuously through a fire, with major variations occurring at the beginning and end of the fire and sometimes at various intermediate times.

The severity of possible fires in an enclosure in a building must be estimated in order to properly develop an engineering design of the fire safety system for the building. The severity of a fire in an enclosure is dependent on a number of factors including the size, shape and ventilation of the enclosure and the fire load in the enclosure. In investigating the severity of fires to be considered in estimating the fire resistance requirements for barrier and structural elements for buildings it became apparent that the estimates obtained using available fire models and correlation formulae were unreliable for the broad range of enclosure sizes, shapes and ventilation arrangements that are possible. The range of enclosure sizes that it is desired to cover ranges from 4 m wide by 8 m deep by 2.4 m high to 100 m by 50 m by 6 m high and 60 m by 60 m by 3 m high.

A variety of studies conducted on various factors that might influence fire severity have been conducted and reported separately ${ }^{1}$.

Reference 1 reports an experimental program designed to investigate the influence on the burning rate of opening width and enclosure shape by comparing the burning rate and behaviour of fires in long enclosures and wide enclosures with similar opening. Fire tests were conducted in enclosures 1500 mm by 600 mm by 300 mm high with ventilation openings of several widths. It was found that the behaviour and fuel mass loss rates of fires in long and wide enclosures differ markedly if the width of the ventilation opening is less than the full width of the enclosure. When the ventilation opening width is equal to that of the enclosure the flows within the enclosure are essentially two-dimensional but when the opening width is less than that of the enclosure the flows within the enclosure are three-dimensional. The mass loss rates for the same opening size in wide enclosures were found to be substantially greater than those for long enclosures for both full width and partial width openings by a factor of from 1.8 to 2.7 . In addition the fire severity (particularly the duration of high temperatures) varied with position in the enclosure, more so for deep enclosures than for wide enclosures.

Another factor of importance is the effect of the position of the openings in each end of enclosures with two vents. Attachment 1 reports on an investigation of this aspect again using small enclosures. This investigation included a comparison of the cross ventilation (two vent) cases with single vent cases in identical shape and size enclosures.

Attachment 2 presents the results of an investigation of the severity of fires in small enclosures with uniform fuel load throughout and a single vent. The investigation covered a wide range of enclosure shapes and opening sizes. It was found that a good correlation could be obtained using all of the variables specifying the geometry of the enclosure and vent. Better and somewhat simpler correlations can be obtained if the data is divided into segments, in part reflecting the differences in behaviour identified in Reference 1. The categories identified with $D / W \geq 2$, and $D / W<2$ and $w / W$ $=1$ and $w / W<1$.

This investigation was complemented by an investigation of the influence of fuel position in long enclosures with a single vent reported in Attachment 3. In this investigation a single tray of fuel was used in each enclosure, but the position of the tray was varied systematically through the tests. It was found that there was significant variation in fire severity for an identical quantity of fuel burnt in different positions in otherwise identical enclosures. There was little variation in the maximum temperatures recorded for each enclosure size, the major variations in fire severity resulted from variations in the duration of burning and high temperatures.

A major international investigation of fire severity in enclosures with uniform fire loads was conducted under the auspices of CIB about thirty years ago ${ }^{2}$. The relevant data from this investigation has been reviewed and reanalysed in Attachment 4. In this investigation the vent height was always identical to the enclosure height. Several crib designs were used with both the stick thickness and spacing being varied. A good correlation for the mass loss rate was obtained using only the vent width and height, the enclosure width and the stick spacing. A correlation using the above variables except for the enclosure width was substantially less satisfactory, indicating that the vent dimensions alone are not sufficient to give an accurate prediction of mass loss rate or duration of burning.

The experimental programs that have formed the basis of these studies have all been at less than full scale. In this report available full scale data is summarised and examined and compared with the above mentioned smaller scale data.

The rate of burning (as measured by heat release rate or mass loss rate) in enclosure fires is usually assumed to be proportional to the ventilation factor $A \sqrt{h}^{3}$, which means that it is directly proportional to the vent width $w$ and height $h$ raised to the power 1.5, that is $h^{1.5}$. Thus, for the same size ventilation openings the same rate of burning is expected.

The following terminology and nomenclature is used for the clear internal dimensions of the enclosure (Figure 1):

- width $(W)$ - horizontal dimension parallel to the plane of the ventilation opening
- depth $(D)$ - horizontal dimension perpendicular to the plane of the ventilation opening
- height $(H)$ - vertical dimension from the bottom surface to the top surface

The following terminology and nomenclature is used for the dimensions of the ventilation opening:

- opening width $(w)$ - the clear horizontal dimension
- opening height ( $h$ ) - the clear vertical dimension
- sill height $(s)$ - the vertical dimension from the enclosure floor to the bottom of the opening



## Figure 1 Enclosure Details

The range of enclosure sizes required to be covered for Project 3 are shown in Table 1. The smallest are 4 m by 8 m and these are moderately close in size to the enclosures used in the VUT tests. The next larger enclosures are 5 m by 20 m and 6 m by 20 m and these are close to the enclosures used in the BSC tests. The remaining enclosures are all considerably larger and there are no tests available with similar sized enclosures, so a high degree of extrapolation will be necessary in these cases.

Table 1 Enclosure and Vent Sizes for Project 3

| $\boldsymbol{W}(\mathbf{m})$ | $\boldsymbol{D}(\mathbf{m})$ | $\boldsymbol{H}(\mathbf{m})$ |
| :---: | :---: | :---: |
| 4 | 8 | 2.4 |
| 4 | 8 | 3 |
| 5 | 20 | 2.4 |
| 5 | 20 | 3 |
| 5 | 20 | 4 |
| 6 | 20 | 3 |
| 8 | 4 | 2.4 |
| 8 | 4 | 3 |
| 20 | 5 | 2.4 |
| 20 | 5 | 3 |
| 20 | 5 | 4 |
| 20 | 6 | 3 |
| 30 | 50 | 5 |
| 50 | 30 | 5 |
| 50 | 100 | 2.4 |
| 50 | 100 | 5 |
| 50 | 100 | 6 |
| 60 | 60 | 3 |
| 100 | 50 | 2.4 |
| 100 | 50 | 5 |
| 100 | 50 | 6 |


| $\boldsymbol{w}(\mathbf{m})$ | $\boldsymbol{h}(\mathbf{m})$ |
| :---: | :---: |
| 4 | $0.39-0.78$ |
| 5 | $0.83-1.65$ |
| 6 | 1.14 |
| 8 | $0.59-2.4$ |
| 20 | $0.9-2.4$ |
| 30 | $1.13-1.70$ |
| 50 | $2.04-5.0$ |
| 60 | $1.52-3.0$ |
| 100 | $2.4-6.0$ |

## Experimental Programs

The experimental programs conducted at less than full scale have been described elsewhere ${ }^{1}$. and Attachments 1, 2, 3 and 4.

The full scale experimental programs that have been used in this study are summarised in Table A1 in Appendix A. They have been confined to tests in enclosures with a single opening where details
of the fuel, ventilation, construction and resulting enclosure temperatures are available. The enclosure sizes are summarised in Table 2 and range from 2.4 m wide by 3.7 m deep by 2.4 m high to 5.6 m wide by 22.9 m deep by 2.8 m high and 8.6 m wide by 5.9 m deep by 3.9 m high. The vent sizes vary widely and are also summarised in Table 2. The fuel used varied considerably as did the bounding wall materials (Table A1).

It is obvious in Table 2 that the enclosure and vent sizes used in most of these tests are smaller than even the smallest enclosures of interest for Project 3 (Table 1).

Table 2 Summary of Enclosure and Vent Sizes in Full Scale Tests

| $\boldsymbol{D}$ | $\boldsymbol{W}$ | $\boldsymbol{H}$ | Tests |
| :---: | :---: | :---: | :---: |
| 3.36 | 3.6 | 3.13 | 10 |
| 3.65 | 3.65 | 3.13 | 23 |
| 3.66 | 2.44 | 2.44 | 1 |
| 3.71 | 7.7 | 2.9 | 5 |
| 5.4 | 3.6 | 2.4 | 6 |
| 5.595 | 5.595 | 2.75 | 1 |
| 5.9 | 8.6 | 3.9 | 10 |
| 7.57 | 9.98 | 4.055 | 1 |
| 22.78 | 5.465 | 2.68 | 1 |
| 22.855 | 5.595 | 2.75 | 7 |


| $\boldsymbol{w}$ | $\boldsymbol{h}$ | $\boldsymbol{s}$ | Tests |
| :---: | :---: | :---: | :---: |
| 0.76 | 2.03 | 0 | 1 |
| 0.9 | 1.06 | 2 | 1 |
| 1.18 | 2.18 | 0.9 | 8 |
| 1.37 | 2.75 | 0 | 1 |
| 1.78 | 2.36 | 1.54 | 2 |
| 1.95 | 2.18 | 0.9 | 1 |
| 2.139 | 1.73 | 1.02 | 1 |
| 2.4 | 1.5 | 0.9 | 3 |
| 2.65 | 1.36 | 1.47 | 23 |
| 3.16 | 1.67 | 0.2 | 3 |
| 3.55 | 2.36 | 1.54 | 7 |
| 5.065 | 2.68 | 0 | 1 |
| 5.195 | 0.375 | 2.375 | 1 |
| 5.195 | 1.47 | 1.28 | 2 |
| 5.595 | 2.75 | 0 | 3 |
| 6.1 | 0.915 | 1.985 | 3 |
| 6.1 | 1.83 | 1.07 | 2 |
| 6.67 | 2.08 | 1.575 | 1 |
| 7.1 | 2.36 | 1.54 | 1 |

The experiments and experimental programs represented by these full scale data were conducted independently and generally for specific purposes. Thus the distribution of the enclosure and vent sizes and shapes is by chance, rather than by design. This means that there are severe limitations on the coverage compared with that which would be desirable for a complete investigation of the influence of various variables.

In examining the data from these tests it has become obvious that there are phenomena and characteristics in larger enclosures that do not have approximately equal width, depth and height that are not normally recognised in tests of smaller (essentially cube shaped) rooms. These phenomena include uneven burning and widely varying temperatures in the room after flashover would normally have been expected to occur ${ }^{1}$.

In the small scale experimental programs it has been found that the behaviour of fires in enclosures is strongly influenced by the width of the vent compared with the width of the enclosure. When the width of the vent was equal to the width of the enclosure the flows through the enclosure resulting from the fire were found to be two-dimensional. In contrast, when the vent width was substantially less than the enclosure width the flows within the enclosure were three-dimensional and the burning rate was found to be greater than in the other case for the same vent size. In the enclosures with two-dimensional flows the hot gases leaving the enclosure were seen to generally occupy the top third of the vent. However, in the enclosures with three-dimensional flows they were seen to occupy the top two-thirds of the vent. Only three of the tests included in this sample had the vent width equal to the enclosure width $(w / W=1)$ and these were in deep enclosures in which the effects
of the three dimensional flows are expected to be seen only while the burning is near the vent. The remainder ranged from $w / W=0.21$ to 0.93 but there were few tests at the lower ratios.

Because the tests were conducted for a variety of purposes the data recorded varies and is limited. In none of the experiments at full scale was the heat release or the mass loss measured. This means that the mass loss has had to be estimated from the duration of the tests and the fire load. Thus there is likely to be considerable error in some of the estimates of mass loss rate. The average mass loss rate has been estimated by dividing the total fire load by the time over which the temperature in the enclosure was greater than $500^{\circ} \mathrm{C}$. This is an arbitrary criterion but is believed to reasonably accurately represent the period of significant burning. The actual period from ignition to extinguishment may well have been anything from somewhat longer than this period to much greater than this period, judging from some of the temperature-time records available and by comparison with similar tests we have conducted.

Ideally, the data from the full scale tests would be used to examine the influence of enclosure and vent size and shape on the burning rate in enclosures. But this is not possible because large proportions of the tests are concentrated at certain enclosure sizes and shapes, making it impossible to meaningfully compare results for various enclosure or vent shapes or determine the influence of enclosure size or shape with any degree of certainty. Similarly with vents, because large proportions of the tests are concentrated at certain vent sizes and shapes (and because these are often associated with certain enclosure sizes and shapes) it is not possible to meaningfully determine the influence of vent size or shape with any degree of certainty. In addition there is a relatively small quantity of data available.

In the small scale tests using wood cribs the measured maximum mass loss rate varied between 1.2 and 2.5 times the average mass loss rate ( $95 \%$ of fuel mass to $5 \%$ of fuel mass) with the mean of the ratio of maximum to average mass loss rate being 1.7. It is assumed that a similar ratio is relevant for the full scale tests and the estimated average mass loss has been multiplied by 1.7 to estimate the maximum mass loss rate. It is also assumed in what follows that the $\mathrm{R}_{8030}$ mass loss rate recorded for the CIB tests approximates the maximum mass loss rate. It is expected that this assumption is reasonable based on the mass loss records of the small scale wood crib tests.

In the following rather than using the mass loss rate $(\mathrm{kg} / \mathrm{s})$ the nominal heat output (MW) is used. This is obtained directly from the mass loss rate by multiplying by the heat of combustion which is taken as $17 \mathrm{MJ} / \mathrm{kg}$ for wood and $27 \mathrm{MJ} / \mathrm{kg}$ for the liquid fuel used in the small scale tests.

## Discussion of the Full Scale Experiments

A series of experiments were conducted for BSC at FRS on in enclosures about 22.9 m deep by 5.6 m wide by 2.8 m high, with one test on a smaller enclosure about 5.6 m square and 2.8 m high (Table A1). The fuel was wood cribs and the enclosures were highly insulated with 50 mm of ceramic fibre blanket insulation. Five of the tests had $w / W<1$ and three had $w / W=1$. As the enclosure width and height were constant through the tests and the depth was the same in all but one tests it is not possible to investigate the effect these might have on the mass loss rate or maximum temperature.

In Figure 2 temperature-time curves are shown for three cross-sections in an enclosure 5.6 m wide by 22.9 m deep by 2.8 m high with wood cribs uniformly distributed over the floor area and a single full height ventilation opening in one 5.6 m wall. The cross-sections at which the temperatures were recorded were $3.3,11.3$ and 19.3 m in from the ventilation opening. During this and similar tests it was observed that, although the fire was started simultaneously in the three cribs in the row
at the rear of the enclosure (that is, the row furthest from the ventilation opening), the fire quickly travelled forward. Once burning was established in the front row of cribs burning of the rear cribs ceased. The front cribs then burned, then the second row of cribs and so on as the fire travelled back through the rows of cribs in the enclosure with the fuel nearest the opening being consumed.

These observations are clearly reflected in the temperature-time curves for the three thermocoupled cross-sections in the enclosure (Figure 2). After ignition, the temperature at all three cross-sections began to rise, most rapidly at the rear and slowest at the front. The temperatures of the rear and then middle cross-sections peaked briefly and then declined substantially. The temperature at front (the cross-section nearest the ventilation opening) stayed high for a much longer period, and as it began to fall the temperature at the middle cross-section began to rise again. It peaked again but for a longer period than previously. As the temperatures in this region began to fall those at the rear cross-section again rose to a peak. Thus the shape of the temperature-time curves for the three cross-sections are quite different and the three cross-sections "see" different fire severities (temperature-time curves).


Figure 2 Temperature-Time Relationships for Three Cross-sections in an Enclosure 5.6 m Wide, 22.9 m Deep and 2.8 m High (Ignition at Rear)

This is illustrated even more clearly in the temperature-time curves for an identical enclosure but with all cribs ignited simultaneously (Figure 3). After a brief period of burning throughout the enclosure the cribs in the rear of the enclosure ceased burning whilst the cribs nearest the ventilation opening burned vigorously. As these front cribs burnt out the fire progressed back through the enclosure.

The temperature at the front cross-section rose rapidly (Figure 3), whilst those at the other crosssections did so progressively more slowly with distance from the ventilation opening. As the cribs in the front of the enclosure burned out and the temperature there began to fall the temperature further back in the enclosure continued to rise. Once the temperature at the middle cross-section peaked and began to fall it was exceeded by the temperature at the rear of the enclosure.

Again the shape of the temperature-time curves for the three cross-sections are quite different - the three cross-sections "see" quite different fire severities (temperature-time curves).

These observations imply that in this size or shape enclosure "flashover" does not appear to result in sufficiently dynamic mixing of the gases in the enclosure to result in uniform conditions or temperatures throughout the enclosure.

For the five BSC tests with $w / W<1$ and using ceramic fibre insulation a least squares regression on the nominal heat output using only the vent width and height results in the following expression ( R in MW):

$$
\begin{equation*}
R=2.70 \times w^{0.710} \times h^{1.094} \tag{1}
\end{equation*}
$$

and the correlation of this estimate of the heat output with the nominal average heat output is shown in Figure 4. It is obvious that this expression provides a very good estimate of the nominal heat output for the tests that it is based on.


Figure 3 Temperature-Time Relationships for Three Cross-sections in an Enclosure 5.6 m Wide, 22.9 m Deep and 2.8 m High (Simultaneous Ignition)

Equation 1 will be used as a basis of comparison of this group of tests with several others.
The correlation of Equation 1 with the remainder of the BSC tests is rather less impressive (Figure 5). In Figure 5 the additional tests can be identified by comparison with Figure 4. The group of three tests are those with $w / W=1$, and the single test below them is one where $w / W<1$ but for this particular test the ceramic fibre insulation (used in all of the other tests) was covered with plasterboard.

If Equation 1 is used to estimate the mass loss rate for the tests with $w / W=1$ the estimated heat output is 27.7 MW but the nominal average heat output varies between 17.3 MW and 19.0 MW. This discrepancy between the nominal (for $w / W=1$ ) and calculated (for $w / W<1$ ) heat output, with the nominal average heat output being significantly less than the calculated, is in line with the findings from the small enclosure tests ${ }^{1}$, although is perhaps greater than expected for low $W / D$ enclosures. An even larger discrepancy that is less easily rationalised is apparent between the predicted heat output and the nominal average heat output for the same enclosure with plaster board installed over the ceramic fibre lining and the opening very similar to that used in one of the above tests $($ predicted $=25.0 \mathrm{MW}$, measured $=11.7 \mathrm{MW})$.


Figure 4 BSC Tests with w/W < 1 and Ceramic Fibre Insulation


An earlier program of tests conducted by BSC and FRS took place in an enclosure 8.6 m wide by 5.9 m deep by 3.9 m high. In these tests the vent height was constant at 2.36 m but three vent widths $1.78 \mathrm{~m}, 3.55 \mathrm{~m}$ and 7.1 m were used. There were two tests at the first width, six at the second and one at the third. For comparison, using Equation 1, the estimated heat outputs for the three vent heights were 10.4, 17.0 and 27.9 MW with the nominal average heat output being 11.9 and $13.6 ; 18.9,19.2,20.4,24.5,24.5$ and 30.6 ; and 36.7 MW respectively (Figure 6). Thus the heat outputs range from about 10 to $80 \%$ above those expected based on Equation 1. It is also interesting to note that the linings of the enclosures varied through some of these tests, with the linings with lower insulating properties correlating with tests with higher heat outputs, rather than the opposite which might be expected based on the BSC plaster lining test mentioned above (Table $\mathrm{A} 1)$.

As several of these tests were duplicates it is of interest to note the variability of the recorded temperatures. The maximum temperatures in the six tests at 3.55 m vent width ranged from $630^{\circ} \mathrm{C}$ to $1080^{\circ} \mathrm{C}$ and the temperatures of the two tests at 1.78 m vent width were 750 and $870^{\circ} \mathrm{C}$. Two of the tests at 3.55 m vent width had highly insulated walls and the temperature range for this group
was 630 to $1080{ }^{\circ} \mathrm{C}$, while two had less wall insulated walls and the temperatures of these tests were 730 and $850^{\circ} \mathrm{C}$.


Figure 6 Comparison of BSC 83 with Equation 1 Prediction
A third set of tests conducted at the predecessor of FRS were conducted in an enclosure about 3.7 m deep by 7.7 m wide by 2.9 m high with the vent width constant at 6.1 m . Two vent heights were used: 1.07 m (three tests) and 1.99 m (two tests). Again using Equation 1 for comparison the estimated heat outputs for the two vent heights were 8.8 and 18.9 MW . The nominal average heat outputs were 9.9, 11.7 and 12.2; and 17.1 and 20.1 MW (Figure 7). The first group are slightly higher than expected but the second group are around the values expected.

The temperature ranges for these tests were 710 to $1180^{\circ} \mathrm{C}$ and 795 to $1070{ }^{\circ} \mathrm{C}$ respectively. All of these tests had highly insulated walls.


Figure 7 JFRO Tests Compared with Equation 1
A large number of tests have been conducted at CTICM in three series, but here they will be treated together. Many of the tests have the same enclosure and vent dimensions, so they provide an estimate of the variability in the results for one laboratory (it might be expected that greater variability would occur between laboratories). The enclosures were about 3.4 or 3.7 m deep, 3.6 or 3.7 m wide and 3.1 m high. A large proportion of the tests were done in the enclosure 3.7 m square
in plan and 3.1 m high and with vent width of 2.65 m and height of 1.47 m ( 23 tests). Other vent dimensions used were 2.18 m wide by 0.9 m and 1.18 m high (eight tests), and 1.06 m wide by 2 m high. Using Equation 1 the estimated heat output f63Ca vent 0.9 m wide by 1.06 m high is 2.7 MW , which may be compared with the nominal average value of 5.3 MW . Fo3Ca vent 1.18 m wide by 2.18 m high Equation 1 predictsCa heat output is 7.1 MW and range of nominal average values was 12.4 to 17.5 MW . Fo3Ca vent 1.95 m wide by 2.18 m high Equation 1 predicts a heat output of 10.2 MW and the nominal average value was 25.0 MW . Fo3Ca vent 2.65 m wide by 1.36 m high estimated heat output is 7.7 MW and range of nominal average values was 7.3 to 9.4 MW . Thus, except f63Cthe last group the nominal average values are generally about twice the estimated values (Figure 8).

For the 23 tests in the 3.65 m square by 3.13 m high enclosure with a 2.65 m wide by 1.36 m high vent the temperature range was 1001 to $1221^{\circ} \mathrm{C}$. Fo3Cthe 8 tests in the enclosure 3.6 m by 3.36 m by 3.13 m high and a vent 1.18 m wide by 2.18 m high the temperature range was 660 to $990{ }^{\circ} \mathrm{C}$. All of these tests had highly insulated walls.


Figure 8 CTICM Tests Compared with Equation 1
Tests conducted at VUT in an enclosure 5.4 m deep by 3.6 m wide by 2.4 m high with two opening sizes 3.16 m wide by 1.67 m high and 2.4 m wide and 1.5 m high resulted in nominal average heat outputs of 18.0, 19.4 and 24.7 MW for the first and 19.4, 20.9 and 20.9 MW for the second compared with Equation 1 estimates of 7.8 and 10.7 MW. Thus the measured values are from about two to three times the estimated values.


If all of the data for $w / W<1$ is pooled and a similar analysis conducted the following results:

$$
\begin{equation*}
R=9.50 \times W^{-0.033} \times D^{-0.313} \times H^{-0.342} \times w^{0.525} \times h^{1.388}\left(r^{2}=0.57\right) \tag{2}
\end{equation*}
$$

or, in terms of the vent dimensions only:

$$
\begin{equation*}
R=5.41 \times w^{0.366} \times h^{1.014}\left(r^{2}=0.50\right) \tag{3}
\end{equation*}
$$

In both cases the estimate of any individual result is subject to confidence limits of about $\pm 10 \mathrm{MW}$ (Figures 10 and 11). In these figures the middle line is the mean and the lines either side are the $95 \%$ confidence limit lines.


Figure 10 Comparison with Equation 2


Figure 11 Comparison with Equation 3
As there are only three tests in the full scale tests with $w / W=1$ it is not possible to conduct a similar analysis for the $w / W=1$ case.

Examining the three tests for the $w / W=1$ case closely the only differences between the tests were the fire load density (which appears to have had little or no effect on the heat output or enclosure temperatures) and whether the fire was lit only in the rear cribs (two tests) or in all cribs simultaneously (which also appears to have had little or no effect).

## Combination of Small, CIB and Full Scale Test Data

## Estimating Burning Rate and Fire Duration

The data from the three data sets are different and to combine them assumptions have to be made. The mass loss was measured in the small scale and CIB test but not in the full scale tests. In the small scale tests the entire mass records are available and from them the maximum mass loss rate and the average mass loss rate have been obtained. In the CIB tests only the average mass loss rate between $80 \%$ of the initial fuel mass and $30 \%$ of the initial mass is available. Based on examination of the small scale test mass loss records it is assumed that this mass loss rate would be very close to the maximum rate of mass loss, and it is on this basis that the combination of these sets of data has been made. In the full scale test program only the initial mass of fuel is available. It has been assumed that all of the fuel is burned and (as indicated earlier) that the period of significant burning is approximately equal to the time for which the enclosure temperature is above $500{ }^{\circ} \mathrm{C}$. This time has then been used to calculate the average mass loss rate and the maximum mass loss rate calculated from it by multiplying by 1.7 as explained earlier. These assumptions have enabled the three data sets to be combined.

In examining the combined data from the small enclosure tests, the CIB testing program and the collection of full scale test data it becomes obvious that great care has to be taken in conducting regression analyses of the data and in drawing conclusions on the physics governing fires in enclosures based on those analyses. The need for caution is illustrated through an examination of the data in Tables 3, 4, and 5.

## Table 3 Correlation of Variables

| Variable | W | D | H | Wv | hv |
| :--- | :---: | :---: | :---: | ---: | ---: |
| W | 1.0000 | 0.6080 | 0.8541 | 0.8209 | 0.8055 |
| D | 0.6080 | 1.0000 | 0.5797 | 0.6276 | 0.5904 |
| H | 0.8541 | 0.5797 | 1.0000 | 0.6872 | 0.8804 |
| wv | 0.8209 | 0.6276 | 0.6872 | 1.0000 | 0.6169 |
| hv | 0.8055 | 0.5904 | 0.8804 | 0.6169 | 1.0000 |

Table 3 presents the correlations of the dimensions of the enclosures and vents. A number close to 1 represents a high correlation whereas a number close to zero means there is no correlation between the variables. It can be seen that most of the variables are highly correlated with at least one other variable, with the possible exception of the enclosure depth $D$. This means that in regression analysis it is not possible to tell which, if any, of these variables is likely to be related to changes in the dependent variable and often one variable emerges in the regression representing the major effect of the correlated variables and the other variables effectively provide a minor adjustment of the overall trend. Very slight changes to the data can result in what are apparently major changes to the regression formula if the variable representing the major effect changes. However, comparison of the results of these apparently very different formulae will show that they actually produce very similar results in the range of the data. Nevertheless, very wide divergences can occur if the formula is extrapolated beyond the range of the data on which it is based. The effect of the correlation of the variables in this case can be seen in Tables 4 and 5 which are discussed below.

In Reference 1 it has been shown that there are major differences in the behaviour of fires with full width ventilation openings and those with partial width openings. These differences result in substantially different severities (particularly fire durations) in otherwise identical enclosures with ventilation openings of identical size ${ }^{1}$. Thus in the following the data is examined in two groups:
$w / W=1$ (in Tables 4 and 5) and $w / W<1$ (in Tables 6 and 7). Tables 4 and 5 are based on all of the experimental data mentioned above with a full width opening $(w / W=1)$ and Tables 6 and 7 are based on all of the experimental data with a partial width opening $(w / W<1)$.

In these tables two sets of correlation/regression data are given. Tables 4 and 6 relate to the correlation of the variables themselves. Tables 5 and 7 relate to regression formulae of the form:

$$
\begin{equation*}
R=C \times W^{n W} \times D^{n D} \times H^{n H} \times w^{n w} \times h^{n h} \tag{A}
\end{equation*}
$$

In Tables 5 and 7 one or more of the variables have been used in with Equation A and the correlation between the resulting values and the mass loss rate is given on the same line of the tables.

Table 4 Results of Regression Analyses for Enclosures with a Full Width Opening ( $w / W=1$ )

| Variable | W | D | H | hv |
| :--- | :---: | :---: | :---: | :---: |
| W | 1.0000 | 0.6298 | 0.8333 | 0.8143 |
| D | 0.6298 | 1.0000 | 0.7127 | 0.6979 |
| H | 0.8333 | 0.7127 | 1.0000 | 0.9924 |
| hv | 0.8143 | 0.6979 | 0.9924 | 1.0000 |

Table 5 Results of Regression Analyses for Enclosures with a Full Width Opening ( $w / W=1$ )

| $\mathbf{C}$ | nW <br> =nw | nD | $\mathbf{n H}$ | $\mathbf{n h}$ | Correlation <br> Coefficient |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.27 | 2.15 | 0.00 | 0.00 | 0.00 | 0.75 |
| 0.65 | 0.00 | 1.07 | 0.00 | 0.00 | 0.91 |
| 1.17 | 0.00 | 0.00 | 2.72 | 0.00 | 0.94 |
| 1.17 | 0.00 |  | 0.00 | 2.73 | 0.94 |
| 0.53 | 0.85 | 0.66 | 0.00 | 0.00 | 0.97 |
| 0.44 | 1.17 | 0.00 | 1.70 | 0.00 | 0.97 |
| 0.44 | 1.17 | 0.00 | 0.00 | 1.69 | 0.97 |
| 1.20 | 0.00 | 0.41 | 1.44 | 0.00 | 0.96 |
| 1.21 | 0.00 | 0.43 | 0.00 | 1.39 | 0.96 |
| 1.16 | 0.00 | 0.00 | 2.94 | -0.21 | 0.94 |
| 0.66 | 0.79 | 0.34 | 0.90 | 0.00 | 0.98 |
| 0.67 | 0.72 | 0.35 | 0.00 | 0.87 | 0.98 |
| 0.67 | 0.78 | 0.35 | -0.28 | 1.15 | 0.98 |
| 0.44 | 1.17 | 0.00 | 1.71 | -0.02 | 0.97 |
| 0.67 | 0.78 | 0.35 | 0.00 | 0.87 | 0.98 |

Inspection of Table 4 shows that the variables (the dimensions of the enclosure and vent) are highly correlated, remembering in addition that as $w=W, w$ and $W$ are perfectly correlated.

As shown in Table 5 when each individual or combination of variables is used in Equation A the correlation of the result with the heat output is quite high when each variable is used singly, with little difference between them. The best correlation using Equation A automatically involves all of the independent variables but almost as good a correlation can be obtained with the enclosure height omitted, this being the case because the enclosure height and opening height are very highly correlated. Also of interest is fact that the values obtained for the correlation involving both the opening width and height are rather different to those obtained by Kawagoe ${ }^{7}$ and that the correlation coefficient for this case is no better than that obtained using the enclosure width, depth and height in any combination of pairs.

Table 6 Results of Regression Analyses for Enclosures with a Partial Width Opening ( $w / W<1$ )

| Variable | W | D | $H$ | wv | hv |
| :--- | :---: | :---: | :---: | ---: | ---: |
| W | 1.0000 | 0.5604 | 0.8128 | 0.8435 | 0.7526 |
| D | 0.5604 | 1.0000 | 0.5107 | 0.6269 | 0.4556 |
| H | 0.8128 | 0.5107 | 1.0000 | 0.7568 | 0.8438 |
| Wv | 0.8435 | 0.6269 | 0.7568 | 1.0000 | 0.5544 |
| hv | 0.7526 | 0.4556 | 0.8438 | 0.5544 | 1.0000 |

Table 7 Results of Regression Analyses for Enclosures with a Partial Width Opening ( $w / W<1$ )

| $\mathbf{C}$ | $\mathbf{n W}$ | $\mathbf{n D}$ | $\mathbf{n H}$ | $\mathbf{n w}$ | $\mathbf{n h}$ | Correlation <br> Coefficient |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.41 | 1.22 | 0.00 | 0.00 | 0.00 | 0.00 | 0.60 |
| 3.47 | 0.00 | 0.57 | 0.00 | 0.00 | 0.00 | 0.36 |
| 1.63 | 0.00 | 0.00 | 1.81 | 0.00 | 0.00 | 0.71 |
| 4.54 | 0.00 | 0.00 | 0.00 | 0.82 | 0.00 | 0.59 |
| 3.43 | 0.00 | 0.00 | 0.00 | 0.00 | 1.97 | 0.64 |
| 1.41 | 1.12 | 0.12 | 0.00 | 0.00 | 0.00 | 0.61 |
| 1.47 | 0.44 | 0.00 | 1.27 | 0.00 | 0.00 | 0.74 |
| 2.10 | 0.78 | 0.00 | 0.00 | 0.37 | 0.00 | 0.64 |
| 2.08 | 0.64 | 0.00 | 0.00 | 0.00 | 1.16 | 0.70 |
| 1.45 | 0.00 | 0.18 | 1.67 | 0.00 | 0.00 | 0.72 |
| 4.36 | 0.00 | 0.05 | 0.00 | 0.78 | 0.00 | 0.59 |
| 3.15 | 0.00 | 0.19 | 0.00 | 0.00 | 1.67 | 0.66 |
| 1.83 | 0.00 | 0.00 | 1.43 | 0.32 | 0.00 | 0.74 |
| 1.89 | 0.00 | 0.00 | 1.26 | 0.00 | 0.85 | 0.77 |
| 3.39 | 0.00 | 0.00 | 0.00 | 0.543 | 1.31 | 0.80 |
| 1.43 | 0.40 | 0.06 | 1.26 | 0.00 | 0.00 | 0.74 |
| 2.05 | 0.76 | 0.04 | 0.00 | 0.35 | 0.00 | 0.64 |
| 2.05 | 0.59 | 0.08 | 0.00 | 0.00 | 1.11 | 0.71 |
| 1.62 | 0.30 | 0.00 | 1.21 | 0.20 | 0.00 | 0.75 |
| 1.77 | 0.23 | 0.00 | 1.07 | 0.68 | 0.70 | 0.78 |
| 3.67 | -0.09 | 0.00 | 0.00 | 0.58 | 1.37 | 0.80 |
| 3.86 | 0.00 | -.024 | 0.00 | 0.64 | 1.55 | 0.81 |
| 2.27 | 0.00 | 0.00 | 0.70 | 0.41 | 0.96 | 0.83 |
| 3.57 | -0.452 | -0.229 | 0.729 | 0.683 | 1.53 | 0.85 |

A similar inspection of Tables 6 and 7 reveals that in all cases the correlations are not as good as for the previous case (Tables 4 and 5). However, a similar pattern emerges in regard to the precision of the correlations. In terms of the individual dimensions of the enclosure and the heat output the best correlation is with the width of the enclosure, and the worst with the enclosure depth. In the correlations using combinations of the enclosure and vent dimensions the combination using only the vent width and height is quite a good correlation but the correlation using all of the enclosure and vent dimensions is distinctly better. Combinations using the enclosure width and height are almost as good as those with the vent width and height which again give values rather different from the values obtained by Kawagoe ${ }^{7}$.

The question is what does all of this mean? It appears that in general all that can be said from these correlations is that as enclosures get bigger so do the vents, and so does the burning rate. There is little to indicate that any particular combination of dimensions has greater virtue or physical significance than another, except perhaps that correlations using all of the variables give the best correlations (but not necessarily greatly better than simpler combinations). It may, perhaps, be inferred from the tables that the rate of burning (mass loss rate or heat release rate) is not simply
dependent on the vent dimensions, but rather, on the size and shape of the vent and its relationship to the enclosure size and shape.

Thus, comparing Tables 5 and 7 it appears worthwhile separating the cases covered by each table as the results in the two tables are distinctly different and it has been established previously that there are differences in the mechanisms in enclosures of these types. However, there is a problem with the available full scale data in this regard, as there is little data at full scale for $w / W=1$ and even for the $w / W<l$ case the data is skewed in that reasonably long enclosures are represented but wide enclosures are not. Nevertheless, the data is all that is available so recommendations must, for now, be based on it.

Thus it is recommended that the following expressions be used:

$$
\begin{array}{lll}
w / W=1 & R=0.435 \times w^{1.17} \times h^{1.69} & \left(\mathrm{r}^{2}=0.97\right) \\
w / W<1 & R=3.39 \times w^{0.543} \times h^{1.31} & \left(\mathrm{r}^{2}=0.80\right)
\end{array}
$$

These may be compared with Kawagoe's formula:

$$
\begin{equation*}
R=1.56 \times w^{1.0} \times h^{1.5} \quad\left(\mathrm{r}^{2}=0.66\right) \tag{6}
\end{equation*}
$$

(The range of enclosure and vent sizes used by Kawagoe to develop the relationship is not available to the author. Based on Figure 10.1 of Reference 7 there were about 27 tests. Based on the range of ventilation factors it appears that the characteristic dimensions of the vents used by Kawagoe ranged from about 0.3 m to about 5 m , a similar range as available to this study.)


Figure 12 w/W = 1, Correlation of Equation 4 with Test Data


Figure 13 w/W < 1, Correlation of Equation 5 with Test Data


Figure 14 All w/W, Correlation of Equation 6 with Test Data
Figure 12 shows the very good correlation between the predicted and nominal maximum heat outputs for the $w / W=l$ case, but it should be understood that this is over a limited range of vent sizes and there are only three tests at the highest size. Figure 13 shows considerably more scatter for the case $w / W<1$, but nevertheless considerably less scatter than for Kawagoe's expression (Figure 14).

The correlation of Equations 4 and 5 with Kawagoe's formula is shown in Figures 15 and 16 for the range of vent sizes included in the database. Similar correlations, but for the range of vent sizes required for Project 3 are shown in Figures 17 and 18.


Figure 15 Correlation of Equation 4 with Equation 6 for $w / W=1$
Figure 15 shows that Equation 4 correlated very well with Kawagoe's formula over the range of data $\left(\mathrm{r}^{2}=0.997\right)$ but the magnitude is approximately half of Kawagoe's estimate ( $=0.51 \times \mathrm{K}-0.97$ )


Figure 16 Correlation of Equation 5 with Equation 6 for $w / W<1$
Figure 16 shows that Equation 5 also correlated quite well with Kawagoe's formula over the range of data $\left(\mathrm{r}^{2}=0.95\right)$. The magnitude is closer to Kawagoe's estimate $(=0.68 \times \mathrm{K}+4.8)$ but this is by virtue of an offset and an only a slightly closer slope.


Figure 17 Correlation of Equation 4 with Equation 6

Figure 17 shows that Equation 4 correlates well with Kawagoe's formula over the range of data ( $\mathrm{r}^{2}$ $=0.995$ ). The magnitude is very close to Kawagoe's estimate ( $=0.98 \times \mathrm{K}-32$ ). However, this is at odds with the relationship over the range of the data, where the estimate using Equation 4 is about half Kawagoe's estimate.


Figure 18 Correlation of Equation 5 with Equation 6
Figure 18 shows that Equation 6 also appears to correlate well with Kawagoe's formula over the range of data $\left(\mathrm{r}^{2}=0.95\right)$. But the magnitude is greatly different from Kawagoe's estimate ( $=0.19 \mathrm{x}$ $K+19)$. The offset has little effect with the relationship being dominated by the slope of 0.19 . Again this is at odds with the relationship between these two estimates over the range of the data, where the Equation 6 estimate and Kawagoe's estimate are about the same.

This illustrates a problem.
None of the formulae have any theoretical basis - all, including Kawagoe's formula, are empirical expressions that correlate reasonably well with the experimental data. However, outside the range of the data they diverge and are not capable of providing a reliable estimate. This is illustrated in Figure 19 in which several of the correlations from Table 4 are plotted against Kawagoe's formula for the range of enclosure and opening sizes required for Project 3. Inspection of Figure 19 reveals that the predictions based on the formulae diverge widely. The user is left with the question of which (if any) to use, when none have any greater validity than any other.


Figure 20 Comparison of Various Fire Duration Estimates (minutes) with Kawagoe's Estimate for the Range of Enclosure and Opening Dimensions for Project 3

## Estimating Maximum Temperature

The variation of the maximum recorded temperature is plotted against enclosure and vent dimensions in Figure 21. The basis for the temperature varies slightly between the various test programs, but the figures used are assumed to represent a general maximum temperature reached in the tests. The variation in temperature in the CIB tests (which were all for the same room lining materials) was very high and no basis for close estimation of temperature was obtained for that data. For the small scale tests, little systematic variation in temperature was found over most of the range of tests. In that case (and this is reflected to some extent also in the CIB and full scale data) the major systematic variation in temperature was a reduction in temperature as the duration of burning became very long.

Shown in Figure 21 (and subsequent figures) are lines of best fit (generally parabolic, because a parabolic fit generally gave a significantly higher correlation coefficient than a straight line) and 95 percentiles on the temperatures. In Figure 21 it is obvious that there is some systematic variation in the maximum temperature with the dimensions of the enclosure and vent but that this variation is in the midst of great variability. It appears at least possible that there is a scale effect with higher temperatures being associated with larger enclosures. This may also be responsible for the apparent increase in temperature with increase in heat release rate (Figure 22), but as with the increase in temperature with increase in enclosure and vent dimensions, there seems to be some limit beyond which the effect is reversed.

It is commonly claimed that the temperature varies with the ratio of the total surface area of the enclosure $\left(A_{t}\right)$ to the ventilation factor $(A \sqrt{h})$. A least squares regression has been conducted to check on this effect resulting in equation 7. In this equation the terms $A_{t}, w$ and $h$ have been combined to produce the best correlation.

$$
\begin{equation*}
T_{m}=869 \times A_{t}^{0.0061} \times w^{0.044} \times h^{0.050} \quad\left(\mathrm{r}^{2}=0.26\right) \tag{7}
\end{equation*}
$$

The resulting correlation is shown in Figure 23, where it is obvious that there is still a very large degree of scatter in the results. A similar regression combining in the same way the dimensions of the enclosure and the vent results in a slightly better correlation as shown in Figure 24. The resulting relationship is shown in equation 8 .

$$
\begin{equation*}
T_{m}=869 \times W^{0.0061} \times D^{0.00} \times H^{000} \times w^{0.044} \times h^{0.050} \quad\left(\mathrm{r}^{2}=0.28\right) \tag{8}
\end{equation*}
$$



Figure 21 Variation of Maximum Temperature with Enclosure and Vent Dimensions


Figure 22 Variation of Maximum Temperature with Rate of Burning and w/W


Figure 23 Correlation of Maximum Temperature with Equation 7


Figure $\mathbf{2 4}$ Correlation of Maximum Temperature with Equation 8


Figure 25 Correlation of Maximum Temperature with Burnout Time
In Figure 25 the correlation of the maximum temperature and the burnout time is shown. There appears to be some slight relationship for longer burnout times but there is clearly not a strong relationship at lower burnout times.

A reasonably close approximation to the upper limit of these temperatures can be obtained using Equation 9

$$
\begin{equation*}
T_{m}=1000 H^{0.12} \tag{9}
\end{equation*}
$$

However, it is not recommended that this equation be used to estimate the maximum temperature because any accuracy that may be assumed by users would be a mistake. It is recommended that a temperature of $1100^{\circ} \mathrm{C}$ be used, except perhaps when very low burning rates (associated with very low ventilation) are apparent.


Figure 25 Recommended Maximum Temperature Curve (points are measured temperatures)

## Predictions for Project 3 Enclosures

The enclosures, fuel loads and ventilation conditions of interest in Project 3 are shown in Table A2. As mentioned above these (particularly in relation to size) are considerably different from the enclosures covered by the experimental data.

It is not considered advisable to extrapolate significantly from the conditions represented by the experimental data. Consequently some consideration is required of how to treat the enclosures that require significant extrapolation.

Apart from the enclosure and vent dimensions, the other major departure from the experimental data is the fire load, which in many of the enclosures is considerably greater than used in the tests. Examination of the test results has revealed that for the quite limited range of fire loads covered, the changes in the fire load have little or no effect on the rate of burning. Thus, the duration of burning is essentially proportional to the fire load. It will be assumed that this remains true throughout the range of fire loads required for Project 3 although it is by no means certain that this is indeed the case for the very high fire loads specified for some occupancies.

With the recommendation that a single enclosure temperature be adopted the duration of high temperatures (assumed closely related to the duration of burning) becomes de facto a surrogate for fire severity. (It also appears from Figure 22 that there is no significant difference between the $w / W$ $=1$ and $w / W<1$ cases in regard to temperatures.) As discussed above, small scale testing and the regression formulae developed above indicate that for a given vent size a full width vent ( $w / W=1$ ) results in longer fire durations than partial width vents. In terms of the objectives of Project 3, related to determination of FRL's for deemed to satisfy requirements it is conservative (that is, longer fire durations and thus higher FRL's will result) if it is assumed all vents are full width vents. Thus Equation 4 will be used in preference to Equation 5 for determination of fire duration.

Considering now the enclosure and vent size issues. The enclosure sizes 4 m by $8 \mathrm{~m}, 8 \mathrm{~m}$ by 4 m and 5 and 6 m by 20 m are within the range covered by the data and therefore can be addressed using Equations 4, 5 and 9. The remaining enclosure sizes 20 m by 5 and $6 \mathrm{~m}, 30 \mathrm{~m}$ by $50 \mathrm{~m}, 50 \mathrm{~m}$ by $100 \mathrm{~m}, 60 \mathrm{~m}$ by 60 m and 100 m by 50 m (see Table 1) are outside this range and therefore are not covered.

Fire duration and temperature results based on Equations 4 and 9 for the range of enclosures considered to be covered by the data are given in Table A3.

The fire duration is obtained from the following formula:

$$
\begin{equation*}
t_{500}=\frac{Q \times D}{\left(\frac{R}{1.7}\right) \times 60}(\text { minutes }) \tag{10}
\end{equation*}
$$

This relates the total fire load per unit width of enclosure (and vent) divided by the maximum burning rate estimated using Equation 4 to the fire duration (taken as the time for which temperatures are above $500{ }^{\circ} \mathrm{C}$ ). The 1.7 term adjusts the estimated maximum burning rate back to an average rate.

Before considering how to cover those enclosures requiring extrapolation it is worthwhile considering the results obtained from Equation 4 for the largest enclosures covered by the data. Therefore an enclosure 5 m wide by 20 m deep with a full width vent will be considered. The vent
heights required for the large enclosures (Table A2) range include $0.91,1.13,1.21,1.52,1.70,2.04$, $2.40,2.89,3.00,4.08,4.34,4.63,5.00$ and 6.00 m . The only vent height in the data for an enclosure of this approximate size is 2.75 m high. However in the smaller enclosures there are a variety of vent heights less than this, so it is presumed that smaller vents are reasonably covered by relationships based on the data. As pointed out in References ?, ? and ? the flows observed in enclosures with full width vents are essentially two-dimensional and thus it is expected that the gas flows and thus burning rate are essentially proportional to the width of the enclosure and vent. A regression has been carried out on the data similar to Equation 4 but with the index for the vent width w constrained to 1.0. The resulting relationship is Equation 11.

$$
\begin{equation*}
w / W=1 \quad R=0.53 \times w \times h^{1.8} \quad\left(\mathrm{r}^{2}=0.97\right) \tag{11}
\end{equation*}
$$

This relationship (with $w=1.0 \mathrm{~m}$ ) produces the results shown in Table 6 for unit width vents and the range of vent heights required. Note that vent heights greater than 3 m are a significant extrapolation from the data.

Table 6 Burning Rate and Fire Duration for a Range of Vent Heights

| $\mathrm{h}(\mathrm{m})$ | $\mathrm{R}(\mathrm{MW} / \mathrm{m})$ | $t_{\text {sso }}($ minutes $)$ <br> for $\mathrm{D}=20 \mathrm{~m}$ and <br> $\mathrm{Q}=1000 \mathrm{MJ} / \mathrm{m}^{2}$ |
| :---: | :---: | :---: |
| 0.91 | 0.45 | 1267 |
| 1.13 | 0.66 | 858 |
| 1.21 | 0.75 | 759 |
| 1.52 | 1.13 | 503 |
| 1.70 | 1.38 | 411 |
| 2.04 | 1.91 | 296 |
| 2.40 | 2.56 | 221 |
| 2.89 | 3.58 | 158 |
| 3.00 | 3.83 | 148 |
| 4.08 | 6.66 | 85 |
| 4.34 | 7.44 | 76 |
| 4.63 | 8.36 | 68 |
| 5.00 | 9.60 | 59 |
| 6.00 | 13.33 | 42 |

The resulting fire durations for an enclosure 20 m deep with the fire load densities relevant for these enclosures are shown in Table 7.

Inspection of Table 7 reveals that for all but the lowest fire loads and greatest vent heights the fire durations are very high. Thus, it is expected that for enclosures of greater depth (but having the same vent height) the fire durations will be even greater.

Interpolation within Table 7 reveals that the actual duration for the enclosure that is just over 20 m deep with a 2.75 m high vent is close to the predicted duration. However, the durations for a similar depth enclosure at much smaller vent heights are much greater than those actually obtained.

Table 7 Fire Durations

|  | Fire Duration (minutes) for 20 m deep enclosure and specified fire load density ( $\mathbf{M J} / \mathrm{m}^{\mathbf{2}}$ ) |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| h (m) | Fire Load Density (MJ/m ${ }^{2}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 121 | 170 | 201 | 309 | 410 | 590 | 600 | 1000 | 1401 | 1600 | 1600 | 1904 | 5508 | 13005 |
| 0.91 | 153 | 215 | 254 | 392 | 519 | 747 | 760 | 1266 | 1775 | 2027 | 2027 | 2412 | 6979 | 16477 |
| 1.13 | 104 | 146 | 172 | 265 | 352 | 506 | 515 | 858 | 1202 | 1373 | 1373 | 1634 | 4726 | 11159 |
| 1.21 | 92 | 129 | 152 | 235 | 311 | 448 | 455 | 758 | 1063 | 1214 | 1214 | 1444 | 4179 | 9866 |
| 1.52 | 61 | 86 | 101 | 156 | 206 | 297 | 302 | 503 | 705 | 805 | 805 | 958 | 2772 | 6544 |
| 1.7 | 50 | 70 | 83 | 127 | 169 | 243 | 24 | 411 | 576 | 658 | 658 | 783 | 2266 | 5350 |
| 2.04 | 36 | 50 | 59 | 92 | 121 | 175 | 178 | 296 | 415 | 474 | 474 | 564 | 1632 | 3853 |
| 2.4 | 27 | 38 | 44 | 68 | 91 | 130 | 133 | 221 | 310 | 354 | 354 | 421 | 1218 | 2876 |
| 2.89 | 19 | 27 | 32 | 49 | 65 | 93 | 95 | 158 | 222 | 253 | 253 | 301 | 872 | 2058 |
| 3 | 18 | 25 | 30 | 46 | 61 | 87 | 89 | 148 | 207 | 237 | 237 | 282 | 815 | 1925 |
| 4.08 | 10 | 14 | 17 | 26 | 35 | 50 | 51 | 85 | 119 | 136 | 136 | 162 | 469 | 1107 |
| 4.34 | 9 | 13 | 15 | 24 | 31 | 45 | 46 | 76 | 107 | 122 | 122 | 145 | 419 | 990 |
| 4.63 | 8 | 12 | 14 | 21 | 28 | 40 | 41 | 68 | 95 | 108 | 108 | 129 | 373 | 881 |
| 5 | 7 | 10 | 12 | 18 | 24 | 35 | 35 | 59 | 83 | 94 | 94 | 112 | 325 | 767 |
| 6 | 5 | 7 | 9 | 13 | 17 | 25 | 26 | 42 | 60 | 68 | 68 | 81 | 234 | 553 |

The figures in Table 7 indicate that for many deeper enclosures with moderate to very high fire load densities the possible fire durations are very great. Possibly in these cases extrapolation is unnecessary, as the fire durations are such that it is obvious that fires of such durations in buildings are simply unacceptable and also that the fire resistance level that would be required to withstand fires of such durations would be well over even the greatest fire resistances specified for buildings. In such cases it might be argued that systems preventing such fires occurring are more appropriate than attempting to physically confine or resist them by specifying a fire resistance level.

## Conclusions

Estimates of the duration and maximum temperatures that might be experienced in fires in small enclosures have been made and are presented in Table A2.

Prediction of the duration and maximum temperatures that might be experienced in fires in large enclosures (but with sizes that are quite realistic for many buildings) is subject to great uncertainty as the test data that is available is only for smaller enclosures. Extrapolation based on such data as is available would require assumption of the form of the relationships between the variables. This is not possible at this stage.

## Acknowledgments

The author is grateful to Rob Ralph, Michael Culton and Paul Tisch for carrying out the experimental program and to Ian Bennetts for support and valuable discussions.

## References

1. Thomas, I.R. and Bennetts, I.D., Fires in Enclosures with Single Ventilation Openings Comparison of Long and Wide Enclosures, Submitted for IAFSS Symposium 1999.
2. Thomas, P.H. and Heselden, A.J.M., Fully Developed Fires in Single Compartments. A Cooperative Research Programme of the CIB, CIB Report No 20, Fire Research Note 923.
3. Drysdale, D., An Introduction to Fire Dynamics, Wiley (1985).

## Table A1

| Test | Origin | $\begin{gathered} \mathbf{D} \\ (\mathbf{m}) \end{gathered}$ | $\begin{gathered} \hline \mathbf{W} \\ (\mathbf{m}) \end{gathered}$ | $\begin{gathered} \mathbf{H} \\ (\mathrm{m}) \end{gathered}$ | Maximum Heat Output (MW) | $\begin{aligned} & \text { Fuel } \\ & \text { Type } \end{aligned}$ | FL | $\begin{gathered} \mathbf{w} \\ (\mathbf{m}) \end{gathered}$ | $\begin{gathered} \mathbf{h} \\ (\mathbf{m}) \end{gathered}$ | $\begin{gathered} \mathbf{s} \\ (\mathbf{m}) \end{gathered}$ | $\begin{gathered} \hline \text { BM } \\ \text { Type } \end{gathered}$ | $\begin{gathered} \mathbf{K} \\ (\mathbf{M W}) \end{gathered}$ | $\mathrm{T}^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T7 | VUT 1 | 5.4 | 3.6 | 2.4 | 19.4 | NF | 29 | 3.16 | 1.67 | 0.2 | H | 10.6 | 820 |
| T8 | VUT 2 | 5.4 | 3.6 | 2.4 | 20.9 | NF | 29 | 2.4 | 1.5 | 0.9 | H | 6.88 | 1000 |
| T9 | VUT 3 | 5.4 | 3.6 | 2.4 | 20.9 | NF | 29 | 2.4 | 1.5 | 0.9 | H | 6.88 | 950 |
| T10 | VUT 4 | 5.4 | 3.6 | 2.4 | 18.1 | NF | 29 | 3.16 | 1.67 | 0.2 | H | 10.6 | 900 |
| T12 | VUT 6 | 5.4 | 3.6 | 2.4 | 19.4 | NF | 29 | 2.4 | 1.5 | 0.9 | H | 6.88 | 990 |
| T13 | VUT 7 | 5.4 | 3.6 | 2.4 | 24.7 | NF | 29 | 3.16 | 1.67 | 0.2 | H | 10.6 | 930 |
| T14c | BSC LSC1 | 22.9 | 5.6 | 2.75 | 19.4 | WC | 40 | 5.595 | 2.75 | 0 | VH | 39.8 | 1210 |
| T15c | BSC LSC2 | 22.9 | 5.6 | 2.75 | 18.4 | WC | 20 | 5.595 | 2.75 | 0 | VH | 39.80 | 1160 |
| T16c | BSC LSC3 | 22.9 | 5.6 | 2.75 | 13.4 | WC | 20 | 5.195 | 1.47 | 1.28 | VH | 14.4 | 1120 |
| T17c | BSC LSC4 | 22.9 | 5.6 | 2.75 | 13.2 | WC | 40 | 5.195 | 1.47 | 1.28 | VH | 14.4 | 1110 |
| T18c | BSC LSC5 | 22.9 | 5.6 | 2.75 | 8.80 | WC | 20 | 2.139 | 1.73 | 1.02 | VH | 7.60 | 1060 |
| T19c | BSC LSC6 | 22.9 | 5.6 | 2.75 | 2.8 | WC | 20 | 5.195 | 0.375 | 2.375 | VH | 1.88 | 800 |
| T20 | BSC LSC7 | 5.6 | 5.6 | 2.75 | 10.1 | WC | 20 | 1.37 | 2.75 | 0 | VH | 9.75 | 1260 |
| T21c | BSC LSC8 | 22.8 | 5.5 | 2.68 | 11.8 | WC | 20.6 | 5.065 | 2.68 | 0 | H | 34.7 | 905 |
| T22c | BSC LSC9 | 22.9 | 5.6 | 2.75 | 17.4 | WC | 20 | 5.595 | 2.75 | 0 | VH | 39.8 | 1200 |
| T24 | BSC83-2 | 5.9 | 8.6 | 3.9 | 20.4 | WC | 10 | 3.55 | 2.36 | 1.54 | H | 20.1 | 670 |
| T26 | BSC83-4 | 5.9 | 8.6 | 3.9 | 36.7 | WC | 15 | 7.1 | 2.36 | 1.54 | H | 40.2 | 600 |
| T27 | BSC83-5 | 5.9 | 8.6 | 3.9 | 19.3 | WC | 15 | 3.55 | 2.36 | 1.54 | H | 20.1 | 850 |
| T28 | BSC83-6 | 5.9 | 8.6 | 3.9 | 11.8 | WC | 15 | 1.78 | 2.36 | 1.54 | H | 10.1 | 870 |
| T30 | BSC83-8 | 5.9 | 8.6 | 3.9 | 18.8 | WC | 20 | 3.55 | 2.36 | 1.54 | H | 20.1 | 970 |
| T36 | BSC83-14 | 5.9 | 8.6 | 3.9 | 30.5 | WC | 15 | 3.55 | 2.36 | 1.54 | L | 20.1 | 730 |
| T37 | BSC83-15 | 5.9 | 8.6 | 3.9 | 13.6 | WC | 15 | 1.78 | 2.36 | 1.54 | L | 10.1 | 750 |
| T39 | BSC83-17 | 5.9 | 8.6 | 3.9 | 24.4 | WC | 20 | 3.55 | 2.36 | 1.54 | L | 20.1 | 850 |
| T41 | BSC83-19 | 5.9 | 8.6 | 3.9 | 24.4 | WC | 15 | 3.55 | 2.36 | 1.54 | H | 20.1 | 630 |
| T42 | BSC83-20 | 5.9 | 8.6 | 3.9 | 15.9 | MC | 15 | 3.55 | 2.36 | 1.54 | H | 20.1 | 1080 |
| T47 | JFRO15-4 | 3.71 | 7.7 | 2.9 | 9.83 | WC | 15 | 6.1 | 0.915 | 1.985 | H | 8.33 | 710 |
| T48 | JFRO15-5 | 3.71 | 7.7 | 2.9 | 17.2 | WC | 30 | 6.1 | 1.83 | 1.07 | H | 23.6 | 795 |
| T49 | JFRO15-6 | 3.71 | 7.7 | 2.9 | 11.8 | WC | 30 | 6.1 | 0.915 | 1.985 | H | 8.33 | 1050 |
| T50 | JFRO15-7 | 3.71 | 7.7 | 2.9 | 20.1 | WC | 60 | 6.1 | 1.83 | 1.07 | H | 23.6 | 1070 |
| T51 | JFRO15-8 | 3.71 | 7.7 | 2.9 | 12.3 | WC | 60 | 6.1 | 0.915 | 1.985 | H | 8.33 | 1180 |
| T52 | CTICM 123 | 3.36 | 3.6 | 3.13 | 5.30 | FP | 30 | 0.9 | 1.06 | 2 | H | 1.53 | 940 |
| T53 | CTICM 130 | 3.36 | 3.6 | 3.13 | 17.48 | FP | 15 | 1.18 | 2.18 | 0.9 | H | 5.93 | 660 |
| T54 | CTICM 131 | 3.36 | 3.6 | 3.13 | 14.6 | FP | 20 | 1.18 | 2.18 | 0.9 | H | 5.93 | 900 |
| T55 | CTICM 132 | 3.36 | 3.6 | 3.13 | 12.8 | FP | 22 | 1.18 | 2.18 | 0.9 | H | 5.93 | 870 |
| T56 | CTICM 133 | 3.36 | 3.6 | 3.13 | 15.9 | FP | 30 | 1.18 | 2.18 | 0.9 | H | 5.93 | 930 |
| T57 | CTICM 134 | 3.36 | 3.6 | 3.13 | 15.9 | FP | 30 | 1.18 | 2.18 | 0.9 | H | 5.93 | 910 |
| T58 | CTICM 135 | 3.36 | 3.6 | 3.13 | 12.5 | FP | 30 | 1.18 | 2.18 | 0.9 | H | 5.93 | 970 |
| T59 | CTICM 136 | 3.36 | 3.6 | 3.13 | 15.4 | FP | 45 | 1.18 | 2.18 | 0.9 | H | 5.93 | 990 |
| T60 | CTICM 137 | 3.36 | 3.6 | 3.13 | 13.8 | FP | 45 | 1.18 | 2.18 | 0.9 | H | 5.93 | 890 |
| T61 | CTICM 143 | 3.36 | 3.6 | 3.13 | 25.0 | FP | 30 | 1.95 | 2.18 | 0.9 | H | 9.79 | 830 |
| T70 | CTICM/CDCE - 2 | 3.65 | 3.65 | 3.13 | 8.94 | WC | 39 | 2.65 | 1.36 | 1.47 | H | 6.56 | 1107 |
| T71 | CTICM/CDCE - 3 | 3.65 | 3.65 | 3.13 | 8.07 | WC | 39 | 2.65 | 1.36 | 1.47 | H | 6.56 | 1110 |
| T72 | CTICM/CDCE - 4 | 3.65 | 3.65 | 3.13 | 8.94 | WC | 39 | 2.65 | 1.36 | 1.47 | H | 6.56 | 1105 |
| T73 | CTICM/CDCE - 5 | 3.65 | 3.65 | 3.13 | 8.94 | WC | 58.5 | 2.65 | 1.36 | 1.47 | H | 6.56 | 1200 |
| T74 | CTICM/CDCE - 6 | 3.65 | 3.65 | 3.13 | 7.58 | WC | 39 | 2.65 | 1.36 | 1.47 | H | 6.56 | 1180 |
| T75 | CTICM/CDCE - 7 | 3.65 | 3.65 | 3.13 | 7.83 | WC | 29.3 | 2.65 | 1.36 | 1.47 | H | 6.56 | 1082 |
| T76 | CTICM/CDCE - 8 | 3.65 | 3.65 | 3.13 | 8.07 | WC | 39 | 2.65 | 1.36 | 1.47 | H | 6.56 | 1124 |
| T77 | CTICM/CDCE - 9 | 3.65 | 3.65 | 3.13 | 8.07 | WC | 39 | 2.65 | 1.36 | 1.47 | H | 6.56 | 1124 |
| T78 | CTICM/CDCE - 10 | 3.65 | 3.65 | 3.13 | 8.63 | WC | 39 | 2.65 | 1.36 | 1.47 | H | 6.56 | 1001 |
| T79 | CTICM/CDCE - 11 | 3.65 | 3.65 | 3.13 | 8.07 | WC | 39 | 2.65 | 1.36 | 1.47 | H | 6.56 | 1176 |
| T80 | CTICM/CDCE - 12 | 3.65 | 3.65 | 3.13 | 8.34 | WC | 39 | 2.65 | 1.36 | 1.47 | H | 6.56 | 1164 |
| T81 | CTICM/CDCE - 13 | 3.65 | 3.65 | 3.13 | 7.36 | WC | 39 | 2.65 | 1.36 | 1.47 | H | 6.56 | 1072 |


| T82 | CTICM/CDCE - 14 | 3.65 | 3.65 | 3.13 | 8.07 | WC | 39 | 2.65 | 1.36 | 1.47 | H | 6.56 | 1221 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T83 | CTICM/CDCE -15 | 3.65 | 3.65 | 3.13 | 8.07 | WC | 39 | 2.65 | 1.36 | 1.47 | H | 6.56 | 1159 |
| T84 | CTICM/CDCE-16 | 3.65 | 3.65 | 3.13 | 8.07 | WC | 39 | 2.65 | 1.36 | 1.47 | H | 6.56 | 1134 |
| T85 | CTICM/CDCE-17 | 3.65 | 3.65 | 3.13 | 7.82 | WC | 39 | 2.65 | 1.36 | 1.47 | H | 6.56 | 1155 |
| T86 | CTICM/CDCE-18 | 3.65 | 3.65 | 3.13 | 8.17 | WC | 29.3 | 2.65 | 1.36 | 1.47 | H | 6.56 | 1133 |
| T87 | CTICM/CDCE-19 | 3.65 | 3.65 | 3.13 | 8.63 | WC | 39 | 2.65 | 1.36 | 1.47 | H | 6.56 | 1196 |
| T88 | CTICM/CDCE-20 | 3.65 | 3.65 | 3.13 | 7.58 | WC | 39 | 2.65 | 1.36 | 1.47 | H | 6.56 | 1171 |
| T89 | CTICM80-1 | 3.65 | 3.65 | 3.13 | 8.94 | WC | 39 | 2.65 | 1.36 | 1.47 | H | 6.56 | 1166 |
| T91 | CTICM80-3 | 3.65 | 3.65 | 3.13 | 9.27 | WC | 39 | 2.65 | 1.36 | 1.47 | H | 6.56 | 1108 |
| T92 | CTICM80-4 | 3.65 | 3.65 | 3.13 | 8.07 | WC | 39 | 2.65 | 1.36 | 1.47 | H | 6.56 | 1177 |
| T93 | CTICM80-5 | 3.65 | 3.65 | 3.13 | 8.07 | WC | 39 | 2.65 | 1.36 | 1.47 | H | 6.56 | 1176 |

VUT 1-7: Alam and Beever: Flashover Tests
BSC LSC 1-9: BSC Natural Fires in Large Scale Compartments
BSC 82-2 to BSC 83-20: Document missing
JFRO 15-4 to 15-8: Document missing
CTICM: Arnault, Ehm and Kruppa, Doc No 2.10.20-3
CTICM: CDCE-2 to 20: Document missing
CTICM 80-1 to 5: Report No 1.019-2, September 1980

Table A2

| Class | W (m) | D (m) | H (m) | w (m) | h (m) | OF | FL | $\begin{gathered} \text { FL } \\ \left(\mathrm{kg} / \mathrm{m}^{2}\right) \end{gathered}$ | $\begin{gathered} \hline \text { Equ } 4 \\ \mathbf{w} / \mathrm{W}=1 \\ \hline \end{gathered}$ | $\begin{gathered} \hline \text { Equ } 5 \\ w / W<1 \\ \hline \end{gathered}$ | $\begin{gathered} \text { Equ } 6 \\ \mathrm{~K} \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 \& 4 | 5 | 20 | 2.4 | 5 | 1.65 | 0.04 | 590 | 34.7 | 234 | 107 | 59 |
| 2 \& 4 | 5 | 20 | 2.4 | 5 | 1.65 | 0.04 | 1000 | 58.8 | 397 | 182 | 101 |
| 2 \& 4 | 5 | 20 | 2.4 | 5 | 1.65 | 0.04 | 1600 | 94.1 | 636 | 291 | 161 |
| 2 \& 4 | 20 | 5 | 2.4 | 20 | 1.03 | 0.1 | 590 | 34.7 | 99 | 94 | 30 |
| $2 \& 4$ | 20 | 5 | 2.4 | 20 | 1.03 | 0.1 | 1000 | 58.8 | 167 | 159 | 51 |
| $2 \& 4$ | 20 | 5 | 2.4 | 20 | 1.03 | 0.1 | 1600 | 94.1 | 268 | 254 | 81 |
| 2 \& 4 | 20 | 5 | 2.4 | 20 | 1.96 | 0.19 | 590 | 34.7 | 33 | 41 | 11 |
| 2 \& 4 | 20 | 5 | 2.4 | 20 | 1.96 | 0.19 | 1000 | 58.8 | 56 | 69 | 19 |
| $2 \& 4$ | 20 | 5 | 2.4 | 20 | 1.96 | 0.19 | 1600 | 94.1 | 90 | 110 | 31 |
| 3a | 4 | 8 | 2.4 | 4 | 0.78 | 0.04 | 300 | 17.6 | 177 | 52 | 37 |
| 3a | 4 | 8 | 2.4 | 4 | 0.78 | 0.04 | 500 | 29.4 | 295 | 86 | 61 |
| 3a | 4 | 8 | 2.4 | 4 | 0.78 | 0.04 | 780 | 45.9 | 460 | 135 | 96 |
| 3a | 8 | 4 | 2.4 | 8 | 1.28 | 0.13 | 300 | 17.6 | 34 | 19 | 9 |
| 3a | 8 | 4 | 2.4 | 8 | 1.28 | 0.13 | 500 | 29.4 | 56 | 32 | 15 |
| 3a | 8 | 4 | 2.4 | 8 | 1.28 | 0.13 | 780 | 45.9 | 88 | 49 | 23 |
| 3a | 8 | 4 | 2.4 | 8 | 2.4 | 0.28 | 300 | 17.6 | 12 | 8 | 4 |
| 3a | 8 | 4 | 2.4 | 8 | 2.4 | 0.28 | 500 | 29.4 | 19 | 14 | 6 |
| 3a | 8 | 4 | 2.4 | 8 | 2.4 | 0.28 | 780 | 45.9 | 30 | 22 | 9 |
| 3b | 4 | 8 | 2.4 | 4 | 0.39 | 0.02 | 300 | 17.6 | 574 | 128 | 104 |
| 3b | 4 | 8 | 2.4 | 4 | 0.39 | 0.02 | 500 | 29.4 | 957 | 213 | 174 |
| 3b | 4 | 8 | 2.4 | 4 | 0.39 | 0.02 | 780 | 45.9 | 1493 | 332 | 271 |
| 3b | 8 | 4 | 2.4 | 8 | 0.59 | 0.06 | 300 | 17.6 | 125 | 52 | 28 |
| 3b | 8 | 4 | 2.4 | 8 | 0.59 | 0.06 | 500 | 29.4 | 209 | 86 | 47 |
| 3b | 8 | 4 | 2.4 | 8 | 0.59 | 0.06 | 780 | 45.9 | 326 | 135 | 74 |
| 3b | 8 | 4 | 2.4 | 8 | 1.18 | 0.12 | 300 | 17.6 | 39 | 21 | 10 |
| 3b | 8 | 4 | 2.4 | 8 | 1.18 | 0.12 | 500 | 29.4 | 64 | 35 | 16 |
| 3b | 8 | 4 | 2.4 | 8 | 1.18 | 0.12 | 780 | 45.9 | 100 | 55 | 26 |
| 3b | 30 | 50 | 5 | 30 | 1.13 | 0.02 | 300 | 17.6 | 396 | 508 | 133 |
| 3b | 30 | 50 | 5 | 30 | 1.13 | 0.02 | 500 | 29.4 | 659 | 847 | 222 |
| 3b | 30 | 50 | 5 | 30 | 1.13 | 0.02 | 780 | 45.9 | 1029 | 1321 | 345 |
| 3b | 50 | 30 | 5 | 50 | 2.04 | 0.06 | 300 | 17.6 | 79 | 180 | 33 |
| 3b | 50 | 30 | 5 | 50 | 2.04 | 0.06 | 500 | 29.4 | 132 | 299 | 55 |
| 3b | 50 | 30 | 5 | 50 | 2.04 | 0.06 | 780 | 45.9 | 205 | 467 | 86 |
| 3b | 50 | 30 | 5 | 50 | 4.08 | 0.12 | 300 | 17.6 | 24 | 73 | 12 |
| 3b | 50 | 30 | 5 | 50 | 4.08 | 0.12 | 500 | 29.4 | 40 | 122 | 19 |
| 3b | 50 | 30 | 5 | 50 | 4.08 | 0.12 | 780 | 45.9 | 63 | 190 | 31 |
| 5 | 4 | 8 | 3 | 4 | 0.39 | 0.02 | 280 | 16.5 | 536 | 119 | 97 |
| 5 | 4 | 8 | 3 | 4 | 0.39 | 0.02 | 800 | 47.1 | 1531 | 340 | 278 |
| 5 | 4 | 8 | 3 | 4 | 0.39 | 0.02 | 1700 | 100.0 | 3253 | 723 | 591 |
| 5 | 8 | 4 | 3 | 8 | 0.79 | 0.08 | 280 | 16.5 | 72 | 33 | 17 |
| 5 | 8 | 4 | 3 | 8 | 0.79 | 0.08 | 800 | 47.1 | 205 | 95 | 49 |
| 5 | 8 | 4 | 3 | 8 | 0.79 | 0.08 | 1700 | 100.0 | 436 | 202 | 105 |
| 5 | 8 | 4 | 3 | 8 | 2.06 | 0.21 | 280 | 16.5 | 14 | 9 | 4 |
| 5 | 8 | 4 | 3 | 8 | 2.06 | 0.21 | 800 | 47.1 | 40 | 27 | 12 |
| 5 | 8 | 4 | 3 | 8 | 2.06 | 0.21 | 1700 | 100.0 | 84 | 58 | 25 |
| 5 | 60 | 60 | 3 | 60 | 1.52 | 0.02 | 280 | 16.5 | 233 | 532 | 95 |
| 5 | 60 | 60 | 3 | 60 | 1.52 | 0.02 | 800 | 47.1 | 666 | 1521 | 272 |
| 5 | 60 | 60 | 3 | 60 | 1.52 | 0.02 | 1700 | 100.0 | 1415 | 3232 | 579 |
| 5 | 60 | 60 | 3 | 60 | 3 | 0.08 | 280 | 16.5 | 74 | 221 | 35 |
| 5 | 60 | 60 | 3 | 60 | 3 | 0.08 | 800 | 47.1 | 211 | 631 | 99 |
| 5 | 60 | 60 | 3 | 60 | 3 | 0.08 | 1700 | 100.0 | 447 | 1340 | 210 |
| 5 | 60 | 60 | 3 | 60 | 3 | 0.21 | 280 | 16.5 | 74 | 221 | 35 |
| 5 | 60 | 60 | 3 | 60 | 3 | 0.21 | 800 | 47.1 | 211 | 631 | 99 |
| 5 | 60 | 60 | 3 | 60 | 3 | 0.21 | 1700 | 100.0 | 447 | 1340 | 210 |


| 6 | 5 | 20 | 3 | 5 | 1.21 | 0.03 | 410 | 24.1 | 276 | 112 | 66 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | 5 | 20 | 3 | 5 | 1.21 | 0.03 | 1000 | 58.8 | 673 | 272 | 160 |
| 6 | 5 | 20 | 3 | 5 | 1.21 | 0.03 | 1900 | 111.8 | 1278 | 517 | 304 |
| 6 | 20 | 5 | 3 | 20 | 0.91 | 0.09 | 410 | 24.1 | 85 | 77 | 25 |
| 6 | 20 | 5 | 3 | 20 | 0.91 | 0.09 | 1000 | 58.8 | 208 | 187 | 62 |
| 6 | 20 | 5 | 3 | 20 | 0.91 | 0.09 | 1900 | 111.8 | 395 | 355 | 117 |
| 6 | 20 | 5 | 3 | 20 | 2.02 | 0.2 | 410 | 24.1 | 22 | 27 | 8 |
| 6 | 20 | 5 | 3 | 20 | 2.02 | 0.2 | 1000 | 58.8 | 53 | 66 | 19 |
| 6 | 20 | 5 | 3 | 20 | 2.02 | 0.2 | 1900 | 111.8 | 102 | 126 | 35 |
| 6 | 50 | 100 | 5 | 50 | 3.09 | 0.03 | 410 | 24.1 | 178 | 477 | 81 |
| 6 | 50 | 100 | 5 | 50 | 3.09 | 0.03 | 1000 | 58.8 | 434 | 1165 | 197 |
| 6 | 50 | 100 | 5 | 50 | 3.09 | 0.03 | 1900 | 111.8 | 824 | 2213 | 375 |
| 6 | 100 | 50 | 5 | 100 | 4.63 | 0.09 | 410 | 24.1 | 39 | 194 | 22 |
| 6 | 100 | 50 | 5 | 100 | 4.63 | 0.09 | 1000 | 58.8 | 95 | 473 | 54 |
| 6 | 100 | 50 | 5 | 100 | 4.63 | 0.09 | 1900 | 111.8 | 180 | 898 | 102 |
| 6 | 100 | 50 | 5 | 100 | 5 | 0.2 | 410 | 24.1 | 34 | 175 | 19 |
| 6 | 100 | 50 | 5 | 100 | 5 | 0.2 | 1000 | 58.8 | 83 | 428 | 48 |
| 6 | 100 | 50 | 5 | 100 | 5 | 0.2 | 1900 | 111.8 | 158 | 813 | 91 |
| 7a | 5 | 20 | 2.4 | 5 | 0.83 | 0.02 | 120 | 7.1 | 155 | 54 | 34 |
| 7a | 5 | 20 | 2.4 | 5 | 0.83 | 0.02 | 200 | 11.8 | 258 | 90 | 57 |
| 7a | 5 | 20 | 2.4 | 5 | 0.83 | 0.02 | 310 | 18.2 | 400 | 139 | 88 |
| 7a | 20 | 5 | 2.4 | 20 | 1.03 | 0.1 | 120 | 7.1 | 20 | 19 | 6 |
| 7a | 20 | 5 | 2.4 | 20 | 1.03 | 0.1 | 200 | 11.8 | 33 | 32 | 10 |
| 7a | 20 | 5 | 2.4 | 20 | 1.03 | 0.1 | 310 | 18.2 | 52 | 49 | 16 |
| 7a | 20 | 5 | 2.4 | 20 | 2.4 | 0.3 | 120 | 7.1 | 5 | 6 | 2 |
| 7a | 20 | 5 | 2.4 | 20 | 2.4 | 0.3 | 200 | 11.8 | 8 | 11 | 3 |
| 7a | 20 | 5 | 2.4 | 20 | 2.4 | 0.3 | 310 | 18.2 | 12 | 16 | 5 |
| 7a | 50 | 100 | 2.4 | 50 | 2.4 | 0.02 | 120 | 7.1 | 80 | 194 | 35 |
| 7a | 50 | 100 | 2.4 | 50 | 2.4 | 0.02 | 200 | 11.8 | 133 | 323 | 58 |
| 7a | 50 | 100 | 2.4 | 50 | 2.4 | 0.02 | 310 | 18.2 | 206 | 501 | 89 |
| 7a | 100 | 50 | 2.4 | 100 | 2.4 | 0.1 | 120 | 7.1 | 35 | 133 | 17 |
| 7a | 100 | 50 | 2.4 | 100 | 2.4 | 0.1 | 200 | 11.8 | 58 | 222 | 29 |
| 7a | 100 | 50 | 2.4 | 100 | 2.4 | 0.1 | 310 | 18.2 | 90 | 344 | 45 |
| 7a | 100 | 50 | 2.4 | 100 | 2.4 | 0.3 | 120 | 7.1 | 35 | 133 | 17 |
| 7a | 100 | 50 | 2.4 | 100 | 2.4 | 0.3 | 200 | 11.8 | 58 | 222 | 29 |
| 7a | 100 | 50 | 2.4 | 100 | 2.4 | 0.3 | 310 | 18.2 | 90 | 344 | 45 |
| 7b | 5 | 20 | 4 | 5 | 1.2 | 0.03 | 1600 | 94.1 | 1095 | 441 | 260 |
| 7b | 5 | 20 | 4 | 5 | 1.2 | 0.03 | 5500 | 323.5 | 3766 | 1516 | 894 |
| 7b | 5 | 20 | 4 | 5 | 1.2 | 0.03 | 13000 | 764.7 | 8901 | 3584 | 2113 |
| 7b | 20 | 5 | 4 | 20 | 0.9 | 0.09 | 1600 | 94.1 | 338 | 303 | 100 |
| 7b | 20 | 5 | 4 | 20 | 0.9 | 0.09 | 5500 | 323.5 | 1163 | 1043 | 344 |
| 7b | 20 | 5 | 4 | 20 | 0.9 | 0.09 | 13000 | 764.7 | 2750 | 2464 | 814 |
| 7b | 20 | 5 | 4 | 20 | 2 | 0.2 | 1600 | 94.1 | 87 | 107 | 30 |
| 7b | 20 | 5 | 4 | 20 | 2 | 0.2 | 5500 | 323.5 | 299 | 369 | 104 |
| 7b | 20 | 5 | 4 | 20 | 2 | 0.2 | 13000 | 764.7 | 708 | 873 | 245 |
| 7b | 50 | 100 | 6 | 50 | 2.89 | 0.03 | 1600 | 94.1 | 775 | 2029 | 348 |
| 7b | 50 | 100 | 6 | 50 | 2.89 | 0.03 | 5500 | 323.5 | 2666 | 6974 | 1196 |
| 7b | 50 | 100 | 6 | 50 | 2.89 | 0.03 | 13000 | 764.7 | 6300 | 16483 | 2826 |
| 7b | 100 | 50 | 6 | 100 | 4.34 | 0.09 | 1600 | 94.1 | 169 | 824 | 95 |
| 7b | 100 | 50 | 6 | 100 | 4.34 | 0.09 | 5500 | 323.5 | 582 | 2831 | 325 |
| 7b | 100 | 50 | 6 | 100 | 4.34 | 0.09 | 13000 | 764.7 | 1376 | 6692 | 769 |
| 7b | 100 | 50 | 6 | 100 | 6 | 0.2 | 1600 | 94.1 | 98 | 540 | 58 |
| 7b | 100 | 50 | 6 | 100 | 6 | 0.2 | 5500 | 323.5 | 335 | 1856 | 200 |
| 7b | 100 | 50 | 6 | 100 | 6 | 0.2 | 13000 | 764.7 | 792 | 4387 | 472 |
| 8 | 5 | 20 | 4 | 5 | 1.2 | 0.03 | 170 | 10.0 | 116 | 47 | 28 |
| 8 | 5 | 20 | 4 | 5 | 1.2 | 0.03 | 600 | 35.3 | 411 | 165 | 98 |
| 8 | 5 | 20 | 4 | 5 | 1.2 | 0.03 | 1400 | 82.4 | 959 | 386 | 228 |
| 8 | 20 | 5 | 4 | 20 | 0.9 | 0.09 | 170 | 10.0 | 36 | 32 | 11 |


| 8 | 20 | 5 | 4 | 20 | 0.9 | 0.09 | 600 | 35.3 | 127 | 114 | 38 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8 | 20 | 5 | 4 | 20 | 0.9 | 0.09 | 1400 | 82.4 | 296 | 265 | 88 |
| 8 | 20 | 5 | 4 | 20 | 2 | 0.2 | 170 | 10.0 | 9 | 11 | 3 |
| 8 | 20 | 5 | 4 | 20 | 2 | 0.2 | 600 | 35.3 | 33 | 40 | 11 |
| 8 | 20 | 5 | 4 | 20 | 2 | 0.2 | 1400 | 82.4 | 76 | 94 | 26 |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | 6 | 0.2 | 170 | 10.0 | 10 | 57 |  |
|  |  | 50 | 6 | 100 | 6 | 0.2 | 600 | 35.3 | 37 | 202 |  |
|  |  | 50 | 6 | 100 | 6 | 0.2 | 1400 | 82.4 | 85 | 472 |  |
| 9a | 6 | 20 | 3 | 6 | 1.14 | 0.03 | 200 | 11.8 | 143 | 64 | 35 |
| 9a | 6 | 20 | 3 | 6 | 1.14 | 0.03 | 350 | 20.6 | 251 | 112 | 61 |
| 9a | 6 | 20 | 3 | 6 | 1.14 | 0.03 | 550 | 32.4 | 394 | 176 | 96 |
| 9a | 20 | 6 | 3 | 20 | 1.03 | 0.09 | 200 | 11.8 | 40 | 38 | 12 |
| 9a | 20 | 6 | 3 | 20 | 1.03 | 0.09 | 350 | 20.6 | 71 | 67 | 22 |
| 9a | 20 | 6 | 3 | 20 | 1.03 | 0.09 | 550 | 32.4 | 111 | 105 | 34 |
| 9a | 20 | 6 | 3 | 20 | 2.29 | 0.2 | 200 | 11.8 | 10 | 14 | 4 |
| 9a | 20 | 6 | 3 | 20 | 2.29 | 0.2 | 350 | 20.6 | 18 | 24 | 6 |
| 9a | 20 | 6 | 3 | 20 | 2.29 | 0.2 | 550 | 32.4 | 29 | 37 | 10 |
| 9 b | 5 | 20 | 3 | 5 | 1.21 | 0.03 | 440 | 25.9 | 296 | 120 | 71 |
| 9b | 5 | 20 | 3 | 5 | 1.21 | 0.03 | 750 | 44.1 | 505 | 204 | 120 |
| 9b | 5 | 20 | 3 | 5 | 1.21 | 0.03 | 1200 | 70.6 | 807 | 326 | 192 |
| 9b | 20 | 5 | 3 | 20 | 0.91 | 0.09 | 440 | 25.9 | 91 | 82 | 27 |
| 9b | 20 | 5 | 3 | 20 | 0.91 | 0.09 | 750 | 44.1 | 156 | 140 | 46 |
| 9b | 20 | 5 | 3 | 20 | 0.91 | 0.09 | 1200 | 70.6 | 249 | 224 | 74 |
| 9 b | 20 | 5 | 3 | 20 | 2.02 | 0.2 | 440 | 25.9 | 24 | 29 | 8 |
| 9 b | 20 | 5 | 3 | 20 | 2.02 | 0.2 | 750 | 44.1 | 40 | 50 | 14 |
| 9 b | 20 | 5 | 3 | 20 | 2.02 | 0.2 | 1200 | 70.6 | 64 | 79 | 22 |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |

## Attachment 1

## Fire Severity in Enclosures with Cross Ventilation

by<br>I R Thomas<br>BHP Research Melbourne Laboratories

## Introduction

Fires in buildings occur in a virtually infinite variety of enclosure sizes and shapes. In estimating the severity of fires that may occur in an enclosure it is important that the effect of enclosure size, shape and ventilation be understood. A comparison of long and wide enclosures with single vents has been reported previously ${ }^{1}$. Another factor of importance is the effect of the position of openings on each side (or end) of an enclosure with one or two vents. This paper reports on small enclosure tests that address this aspect. Comparison of these with identical shape and size enclosures with single ventilation openings of similar size is also included.

The rate of burning (as measured by heat release rate or mass loss rate) in enclosure fires is usually assumed to be proportional to the opening size ${ }^{2}$, directly proportional to the width and to the height raised to the power 1.5. Thus, for the same size ventilation openings the same rate of burning is expected. The experimental program reported below enables comparison of several fires in enclosures with similar total openings but with the openings positioned differently in the walls. An extensive experimental program covering fires in enclosures with single ventilation openings is reported elsewhere ${ }^{3}$.


Figure 1 Enclosure Details

The following terminology and nomenclature is used for the clear internal dimensions of the enclosure (Figure 1):

- width (W) - horizontal dimension parallel to the plane(s) of the ventilation opening(s)
- depth (D) - horizontal dimension perpendicular to the plane(s) of the ventilation opening(s)
- height $(\mathrm{H})$ - vertical dimension from the bottom surface to the top surface

The following terminology and nomenclature is used for the dimensions of the ventilation opening(s):

- opening width (w) - the clear horizontal dimension
- opening height (h) - the clear vertical dimension
- sill height (s) - the vertical dimension from the enclosure floor to the bottom of the opening


## Experimental Program

The enclosures used in the cross-ventilation tests were all 300 mm wide, 1500 mm deep and 200 or 300 mm high (interior dimensions), with the roof, floor and walls of 3 mm steel sheet. In addition, a number of tests were conducted with one side wall of the steel enclosures replaced by glass. This
enabled viewing of the development of the fires and of the gas flows that developed. The effect of the glass wall on the fires was minor compared with the effects of the changes in ventilation.

In each test 2.5 litres of liquid fuel ( $96 \%$ ethanol and $4 \%$ methanol) in five trays each 250 mm square and 25 mm high (each containing 500 ml of fuel) was burned.


Figure 2 Tray and Thermocouple Positions and Numbers
Temperatures were recorded using five Type K mineral insulated thermocouples each 20 mm from the roof and placed centrally over a tray of fuel (Figure 2). Temperature readings were taken every 15 seconds. The fuel mass loss was recorded by weighing the entire enclosure. The mass loss was recorded manually at 15 second intervals using a digital scale able to resolve to 0.01 kg . The vent and enclosure shapes and sizes tested are shown in Table 1.

## Burning of Trays in the Open

Single trays of 500 ml of the liquid fuel were burned in the open to establish the duration of burning in the free-burn situation.


Figure 3 Burning of Single Tray in Open

When burned in the open the fuel burned on all sides of the tray with the flames covering the entire tray. The flames were generally symmetrical and central above the tray (Figure 3).

In the open, single trays containing 500 ml of this fuel burned in an average of 418 seconds. When five trays spaced as in the 300 mm by 1500 mm enclosures were burned in the open, the burnout time averaged of 539 seconds, about $26 \%$ longer than for a single tray.

## Cross-Ventilation Tests

The behaviour of the fires and flows through the enclosures depended on the position of the openings. The tray furthest from the lowest vent was ignited first when the ambient temperature made this possible. If the ambient temperature was sufficiently high, flames flashed briefly throughout the enclosure before stable burning commenced in the tray adjacent to the vent in the single vent tests, and in the cross-ventilation cases, adjacent to the lowest vent or adjacent to both vents in tests with vents at the same sill height in both the front and rear walls.

In the single vent case ${ }^{3}$, when it was possible, the fire was usually lit in the tray furthest from the ventilation opening. In such cases the fire rapidly migrated to the tray closest to the vent without burning much of the fuel and burned along the edge of the tray closest to the vent until the tray was empty. The fire then burned on the front edge of the next tray and so on until all of the fuel in the enclosure was exhausted. The fire burned in one tray at a time despite the presence of other trays of fuel further from the vent.

In the cross-ventilation cases where the vents were of the same size and at the same height the flows were symmetrical for most of the time with flow both into and out of each opening (Figures 4 and 5). In cases when it was possible to start the fire in one tray (as in the tests shown in Figures 4 and 5) the fuel in the adjacent tray ignited soon after the first was ignited. Then the fuel in the next (third) tray ignited, but as soon as this became established burning ceased in the second tray. This pattern continued until only the two end trays adjacent to the vents were burning. Once the fuel in these trays was exhausted burning commenced in the second trays in from each end. Finally the middle tray ignited and burned. The flows in the enclosure were, for most of the time, symmetrical with both vents having inwards flows at the bottom and outwards flows at the top. Effectively, each half of the enclosure appeared to behave as though the enclosure was half the actual length and had an opening at one end only. Occasionally the flow would largely be in at one end and out of the other, but this was not a stable situation and soon reverted to the symmetrical flows described.


Figure 4 Images from Video Record of Fire in Enclosure $\mathbf{3 0 0} \mathbf{~ m m ~ W i d e , ~} 1500 \mathrm{~mm}$ Deep and 300 mm High with Full Width Ventilation Opening at Top of Each End Wall

The behaviour in the enclosures with the opening at the top at one end and at the bottom at the other end was quite different. As mentioned previously, if the ambient temperature was high enough that the fuel throughout the enclosure "flashed" when the ignition flame was introduced into the enclosure, stable burning was established in the tray closest to the low ventilation opening and the other trays of fuel did not burn. When the fuel in that tray was exhausted the fire transferred to the next tray and so on until finally the tray nearest the high ventilation opening burned. From this description it is obvious that the flow that quickly became established was almost entirely in at the end with the lower opening and out at the other end. However, occasionally small flames were emitted from the lower opening. The flame extension at the other end for most of the time was very large and occasionally a very large ball of flame erupted from this end. The trays did not burn simultaneously - burning occurred preferentially in the tray with fuel closest to the low end. Thus the fuel in the tray at the low end burned first, the second tray from this end next, and so on until the tray closest to the end with the high opening burned.

When the ambient temperature was low enough that there was no "flash" at ignition the tray nearest the high vent was ignited. The burned in this tray for a short time, but well before the fuel in the tray was exhausted, burning transferred to the second tray and the first tray went out (Figure 6). This tray again burned for a short time and the fire then transferred to the middle tray, whereupon the fire in the second tray went out. This process continued until the tray nearest the low vent was
burning. Once the fire had transferred away from the high vent there was a large flare out of the high vent. It appears that fuel was being evaporated from the trays between the tray that was burning and the high vent, but there was insufficient oxygen in the gas flow to burn it and it burned on contact with the air outside the high vent. It is noteworthy that the transfer of the fire from the high vent end to the low vent end was against the prevailing airflow and was somewhat slower than the transfer that occurred after ignition in the enclosures with single vents and those with both vents at the same height.

(a) Fire ignited in one end tray

(b) Fire splits and second fire moves towards other vent

(e) Fire moves towards centre

(c) Second fire nears second vent, fire in first tray still burning

(f) Fire finishes in middle of enclosure
(d) Fuel in end trays used and fire moves to second trays from ends

Figure 5 Images from Video Record of Fire in Enclosure $\mathbf{3 0 0} \mathbf{~ m m}$ Wide, 1500 mm Deep and 300 mm High with Full Width Ventilation Opening at Bottom of Each End Wall


Figure 6 Images from Video Record of Fire in Enclosure 300 mm Wide, 1500 mm Deep and 300 mm High with Full Width Ventilation Opening at Bottom of Each End Wall at Bottom of One End Wall and Top of Other End Wall

Once the fuel in the tray closest to the low vent was exhausted the fire transferred to the second tray from the low vent end and so on. In some tests the fuel in one or more of the subsequent trays was exhausted prior to this transfer and the fire skipped to the next tray with fuel.

Examples of temperature histories for several of the tests are given in Figures 7 to 10 . The temperatures mirror the observed behaviour. In Figures 7 and 8 which are for enclosures with equal height openings at both ends, once the brief peak temperatures associated with the initial spread or transition of the fire have passed, the temperature in a region (that is, near a thermocouple) remains comparatively low until the fire moves close to that region. Thus, the tops of the enclosures at the ends are at high temperatures for much longer than the middle of the enclosures.

Table 1 Data for Enclosures with Openings at Both Ends

| Width <br> $(\mathbf{m m})$ | Depth <br> $(\mathbf{m m})$ | Height <br> $(\mathbf{m m})$ | Vent <br> Width <br> $(\mathbf{m m})$ <br> $($ Front $)$ | Vent <br> Height <br> $(\mathbf{m m})$ <br> $($ Front $)$ | Sill <br> Height <br> $(\mathbf{m m})$ <br> $($ Front $)$ | Vent <br> Width <br> $(\mathbf{m m})$ <br> $($ Rear $)$ | Vent <br> Height <br> $(\mathbf{m m})$ <br> $($ Rear $)$ | Sill <br> Height <br> $(\mathbf{m m})$ <br> $($ Rear $)$ | Burnout <br> Time <br> $(\mathbf{s})$ | Maximum <br> Temperature <br> $\left({ }^{\circ} \mathbf{C}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 300 | 1500 | 200 | 300 | 200 | 0 | 300 | 200 | 0 | 1260 | 878 |
| 300 | 1500 | 200 | 300 | 200 | 0 | 300 | 200 | 0 | 1241 | 869 |
| 300 | 1500 | 200 | 300 | 100 | 100 | 300 | 100 | 100 | 2007 | 904 |
| 300 | 1500 | 200 | 300 | 100 | 100 | 300 | 100 | 100 | 2610 | 840 |
| 300 | 1500 | 200 | 300 | 100 | 100 | 300 | 100 | 100 | 2310 | 800 |
| 300 | 1500 | 200 | 300 | 100 | 0 | 300 | 100 | 0 | 3055 | 697 |
| 300 | 1500 | 200 | 300 | 100 | 0 | 300 | 100 | 0 | 3055 | 676 |
| 300 | 1500 | 200 | 300 | 100 | 0 | 300 | 100 | 100 | 932 | 837 |
| 300 | 1500 | 200 | 300 | 100 | 0 | 300 | 100 | 100 | 892 | 817 |
| 300 | 1500 | 300 | 300 | 275 | 25 | 300 | 275 | 25 | 657 | 907 |
| 300 | 1500 | 300 | 300 | 275 | 25 | 300 | 275 | 25 | 655 | 892 |
| 300 | 1500 | 300 | 300 | 150 | 150 | 300 | 150 | 150 | 1369 | 851 |
| 300 | 1500 | 300 | 300 | 125 | 25 | 300 | 125 | 25 | 1667 | 851 |
| 300 | 1500 | 300 | 300 | 125 | 25 | 300 | 150 | 150 | 820 | 894 |
| 300 | 1500 | 300 | 300 | 125 | 25 | 300 | 150 | 150 | 823 | 870 |
| 300 | 1500 | 300 | 300 | 125 | 25 | 300 | 150 | 150 | 812 | 878 |

Figures 9 and 10 are both for enclosures with the vent at the front low and at the rear high, but the test in Figure 9 was ignited near the high vent (at the rear) and that in Figure 10 was ignited near the low vent (near the front).

Figures 11 and 12 show the variation in fuel mass with time during tests with the 200 and 300 mm high enclosures respectively. In both figures the variation of mass with time is reasonably linear (that is, the mass loss rate is reasonably constant) throughout most tests. There is no obvious explanation of the variations between some of the nominally identical tests. Generally though, the repeatability of similar tests is very good. In Figure 11 the mass loss is most rapid with 100 mm openings at the bottom on one end and at the top on the other end. The next most rapid is for enclosures with 200 mm openings both ends and the least rapid is for enclosures with 100 mm openings at the bottom both ends. Unlike the cases mentioned previously, there is significant variation between tests with 100 mm openings at the top both ends, with the slowest falling just under the lines for 100 mm openings at the bottom both ends. There is a significant bi-linearity of the other two tests. The results for the 300 mm high enclosures (Figure 12) are a little different, with the lines for enclosures with 275 mm openings at both ends and those for enclosures with a

125 mm opening at the bottom on one end and a 150 mm opening at the top at the other end being very similar. However, the mass loss was substantially slower for the enclosures with 150 mm openings at the top and for those with 125 mm openings at the bottom, with the former being the faster of these by a small margin.

The overall burnout time results for enclosures with openings at both ends are presented in Figure 13 along with the burnout times for similar enclosures with a single ventilation opening ${ }^{3}$.


Figure 7 Temperature History of Enclosure 300 mm Wide, 1500 mm Long and $\mathbf{3 0 0} \mathbf{~ m m}$ High with Vents 300 mm Wide by 150 mm High at Top of Each End


Figure 8 Temperature History of Enclosure 300 mm Wide, 1500 mm Long and $\mathbf{3 0 0} \mathbf{~ m m}$ High with Vents $\mathbf{3 0 0} \mathbf{~ m m}$ Wide by $\mathbf{1 2 5} \mathbf{~ m m}$ High at Bottom of Each End

The burnout time for the 1500 mm long by 200 mm high enclosures with both ends completely open averaged 1250 seconds which is longer than the burnout time for the 600 mm long by 200 mm high enclosure with a single 200 mm high opening but shorter than the average for the similar 900 mm long by 200 mm high enclosures. It is less than a third of the average burnout time for the 1500 mm long by 200 mm high enclosure with a single 200 mm high opening.

Several of the 1500 mm long by 200 mm high enclosures have the same total opening area. The shortest burnout time among these (average 912 seconds) is for the enclosure with 100 mm high openings at the bottom at one end and the top at the other end. The others with openings at both ends have average burnout times 2.5 and 3.3 times this for both openings at the top and bottom respectively. In comparison, the 1500 mm long by 200 mm high enclosure with a single 200 mm high opening has an average burnout time 4.5 times longer.


Figure 9 Temperature History of Enclosure 300 mm Wide, 1500 mm Long and $\mathbf{3 0 0} \mathbf{~ m m ~ H i g h ~}$ with Vents 300 mm Wide by 150 mm High at Top one End, 125 High at Bottom other End (Ignition high end)


Figure 10 Temperature History of Enclosure 300 mm Wide, 1500 mm Long and 300 mm High with Vents 300 mm Wide by 150 mm High at Top one End, 125 High at Bottom other End (Ignition low end)

The differences are a little less for the 300 mm high enclosures.
The burnout time for the 1500 mm long by 300 mm high enclosures with 275 mm high openings at both ends averaged 656 seconds which is longer than the burnout time for the 600 mm long by 300 $m m$ high enclosure with a single 275 mm high opening ( 564 seconds) but shorter than the average
for the similar 900 mm long by 300 mm high enclosures ( 863 seconds). It is slightly greater than a third of the average burnout time for the 1500 mm long by 300 mm high enclosure with a single 275 mm high opening ( 1789 seconds).


Figure 11 Variation in Fuel Mass During Tests in Enclosure 300 mm Wide, 1500 mm Long and 200 mm High


Figure 12 Variation in Fuel Mass During Tests in Enclosure 300 mm Wide, 1500 mm Long and $\mathbf{3 0 0} \mathbf{~ m m ~ H i g h ~}$

As for the 1500 mm long by 200 mm high enclosures, several of the 1500 mm long by 300 mm high enclosures have very similar total opening areas. The shortest burnout time among these (average 817 seconds) is for the enclosure with a 125 mm high opening at the bottom at one end and a 150 mm opening at the top at the other end. In comparison, the burnout time for the 1500 mm long by 300 mm high enclosure with 150 mm high openings at the top of both ends was 1.7 times as long and the burnout time for the same size enclosure with 125 mm high openings at the bottom of both ends was twice as long. In comparison, the 1500 mm long by 300 mm high enclosure with a single 275 mm high opening has an average burnout time 2.2 times as long.

Enclosures with Two Vents

| 200 mm <br> opening | $\mathbf{1 2 6 0 \mathbf { s }}$ <br> $\mathbf{1 2 4 1 ~ s}$ | 200 mm <br> opening |
| :--- | :--- | :--- |
|  | 1500 mm |  |
| 100 mm <br> opening | $\mathbf{2 0 0 7 \mathbf { s }}$ | 100 mm |
|  | $\mathbf{2 3 1 0} \mathbf{s}$ | opening |
| $\mathbf{2 6 1 0 ~ s}$ |  |  |



| 275 mm <br> opening | $\mathbf{6 5 5} \mathbf{~ s}$ | 275 mm <br> opening |
| :--- | :--- | :--- |



Enclosures with One Vent


Figure 13 Burnout Times for Enclosures with Openings Both Ends and Similar Enclosures with Single Openings for Comparison

## Conclusions

Thus it is clear that great differences in burnout time (and thus average burning rate) occur in enclosures even though they have similar total opening areas. Relatively small differences in the maximum temperatures in the enclosures occurred (Table 1).

Based on these results it is obvious that the position and relative positions of the ventilation openings are very important in determining the severity of fires in enclosures. Openings at different levels on opposite sides of an enclosure lead to the shortest burnout times and thus the least severe fires. Significant differences occur between this case and the burnout times for enclosures with both openings at the top and those with both openings at the bottom.

## Acknowledgments

The author is grateful to Rob Ralph, Michael Culton and Paul Tisch for carrying out the experimental program.

## References

1. Thomas, I.R. and Bennetts, I.D., Fires in Enclosures with Single Ventilation Openings Comparison of Long and Wide Enclosures, Submitted for IAFSS Symposium 1999.
2. Drysdale, D., An Introduction to Fire Dynamics, Wiley (1985).

## Attachment 2

# Fire Severity in Single Vent Enclosures with Uniform Fire Load 

by<br>I R Thomas<br>BHP Research Melbourne Laboratories

## Introduction

The severity of possible fires in a building must be estimated in order to properly develop an engineering design of the fire safety system for the building. The severity of a fire in an enclosure is dependent on a number of factors including the size, shape and ventilation of the enclosure. In investigating the severity of fires to be considered in estimating the fire resistance requirements for barrier and structural elements for buildings it became apparent that the estimates obtained using available fire models and correlation formulae were unreliable for the broad range of enclosure sizes, shapes and ventilation arrangements that are possible.

A comparison of fire severity in long and wide enclosures with single vents has been reported previously ${ }^{1}$. Another factor of importance that has previously been reported is the effect of the position of the openings in each end of enclosures with two vents ${ }^{2}$. Reference 2 included a comparison of the cross ventilation (two vent) cases with single vent cases in identical shape and size enclosures.

The rate of burning (as measured by heat release rate or mass loss rate) in enclosure fires is usually assumed to be proportional to the ventilation factor $A \sqrt{h}{ }^{3}$, which means that it is directly proportional to the vent width $w$ and height $h$ raised to the power 1.5 , that is $h^{1.5}$. Thus, for the same size ventilation openings the same rate of burning is expected. The experimental program reported below investigated the effect of opening shape and size and enclosure shape on the rate of burning in an enclosure with fuel uniformly distributed through the enclosure. An extensive experimental program covering fires in enclosures with single ventilation openings with fuel limited to one area in the enclosure has been reported elsewhere ${ }^{4}$.


Figure 1 Enclosure Details

The following terminology and nomenclature is used for the clear internal dimensions of the enclosure (Figure 1):

- width (W) - horizontal dimension parallel to the plane of the ventilation opening
- depth (D) - horizontal dimension perpendicular to the plane of the ventilation opening
- height (H) - vertical dimension from the bottom surface to the top surface

The following terminology and nomenclature is used for the dimensions of the ventilation opening:

- opening width (w) - the clear horizontal dimension
- opening height (h) - the clear vertical dimension
- sill height - the vertical dimension from the enclosure floor to the bottom of the opening


## Experimental Program

The enclosures used in these tests were all 200 or 300 mm high (interior dimensions). In most tests the roof, floor and walls of made of 3 mm steel plate or 12 mm calcium silicate board. . In a number of tests one side wall of the steel enclosures was replaced by glass. This enabled viewing of the development of the fires and of the gas flows that developed. The effect of the glass wall on the fires in the steel enclosures is shown below to be was minor compared with the effects of changes in ventilation.

In these tests 500 ml of liquid fuel ( $96 \%$ ethanol and $4 \%$ methanol) was placed in one or more 250 mm square and 25 mm high steel trays. Each tray was placed in the centre of an area in the enclosure 300 mm square. Thus in enclosures 300 mm square one tray was used. In enclosures 300 mm by 600 mm two trays were used, and so on up to the maximum enclosure size of 600 mm by 1500 mm in which ten trays were used (Figure 2).


Figure 2 Tray and Thermocouple Positions and Numbers
Temperatures were recorded using five Type K mineral insulated thermocouples with the hot junction exposed. Each thermocouple was 20 mm from the roof and placed centrally over a tray of fuel (Figure 2). Temperature readings were taken every 15 seconds. The fuel mass loss was recorded by weighing the entire enclosure. The mass loss was recorded manually at 15 second intervals using a digital scale able to resolve to 0.01 kg . The vent and enclosure shapes and sizes tested are shown in Table 1.

Initially multiple tests were conducted for many of the enclosure and vent combinations. Due to great consistency in the results, in many later tests only single tests were conducted for each enclosure and vent combination.

Several arrangements of trays of fuel were also burned in the open to enable comparison of fires in the open with those in enclosures using the same fuel quantities and layouts.

## Burning in the Open

Single trays of 250 ml and 500 ml of the liquid fuel ( $96 \%$ ethanol, $4 \%$ methanol) were burned in the open to establish the mode and duration of burning in the free-burn situation. When burned in the open the fuel burned on all sides of the tray with the flames covering the entire tray. The flames were generally symmetrical and central above the tray (Figure 3).


Figure 3 Burning of Single Tray in Open

In the open single trays containing 250 ml of this fuel burned in an average of 215 seconds (range 214 to 215 , two tests) and 500 ml burned in an average of 418 seconds (range 394 to 460 , nine tests).

When a tightly fitting steel shield 50 mm high was fitted on three sides of the tray (effectively an extension of the tray height of 25 mm on three sides) 500 ml of fuel burned in an average of 369 seconds (range 364 to 372 , four tests). The only visible effect was simply to move the centre of the plume back slightly (away from the side that had not been "extended"). The burning appeared to take place over the entire surface of the tray and the flame height was unchanged. As the shielding of the three sides was extended in height in 50 mm steps to a maximum of 300 mm there was little further change. The flames still seemed to cover the entire surface, the flame height appeared unchanged and the centre of the plume moved only slightly further back (away from the unextended side).

When a group of five trays spaced as in the 300 mm by 1500 mm enclosures were burned in the open the burnout time for 500 ml of fuel averaged of 539 seconds ( 538 and 540, two tests), about $29 \%$ longer than for a single tray. Similarly, when a group of ten trays was placed in two rows spaced as in enclosures 1500 mm by 600 mm and burned in the open the burnout time for 500 ml of fuel averaged 502 seconds ( 497 and 507 , two tests), about $20 \%$ longer than for a single tray. In both cases each tray appeared to burn over the entire surface of the tray and the flames from the individual trays converged and combined to become a reasonably stable single major flame a little above the level of the trays (Figures 4 and 5). Thus the flame was generally taller over the centre of the group and the flames from the end trays were slanted towards the centre of the group.


Single Row of Five Trays - arranged as for 1500 mm by 300 mm enclosure
Figure 4 Burning in the Open of Five Trays in a Row


Double Row of Five Trays Per Row - arranged as for 1500 mm by 600 mm enclosure
Figure 5 Burning in the Open of Ten Trays in Two Rows

## Burning in Enclosures

As reported elsewhere ${ }^{1-3}$, when trays of liquid fuel were burned in enclosures the behaviour and appearance of the flames were substantially different from that described above.

The initial behaviour when a flame was introduced into an enclosure with trays of this liquid fuel depended on the ambient temperature. When the ambient temperature was about $15^{\circ} \mathrm{C}$ or above flames flashed briefly throughout the enclosure (above all of the trays) and then burning started in the tray or trays immediately adjacent to the opening. When the ambient temperature was below about $15^{\circ} \mathrm{C}$ it was possible to ignite a specific tray, in such cases the tray furthest from the ventilation opening was usually ignited. The behaviour in all such tests was then identical: the seat of combustion (and flames) rapidly made their way towards the ventilation opening, passing from tray to tray, with the flames in the previous tray being extinguished as combustion became established in the next forward tray. Once the tray (or trays) closest to the vent was ignited, combustion continued in those tray(s) alone until the fuel in those tray(s) was exhausted.

Generally when trays of liquid fuel were burned in an enclosure combustion took place (and flames formed) at the front of the burning tray(s) (Figure 6). Sometimes flames also extended for a short distance along the sides of the tray from the front edge because of the air in the space between the sides of the tray and the enclosure walls or adjacent trays. No flames were visible rising from the back of the tray and most of the fuel was clearly not (directly) covered by flames (in the same way it was when burning took place in the open).

(a) Flames from front of front tray shortly after ignition - flames rise mainly from front edge of tray, travel back and up, and then largely forward and out of the enclosure

(b) Flames from front of rear tray after fuel in front tray exhausted - flames largely from front edge of tray, curve upward then towards vent (note obscuration of flames near vent due soot deposited on glass)

Figure 6 Side View of Fire in Enclosure 600 mm Deep and 200 mm High
Two basic modes of behaviour were observed when trays of liquid fuel were burned in enclosures ${ }^{3}$. In enclosures where the vent was the full width of the enclosure the behaviour was essentially two dimensional (Figures 6 to 9). In enclosures with the vent width less than the width of the enclosure the behaviour was (at least for the time burning remained near the vent) three dimensional (Figure 10). The behaviour of each of these situations will now be described in detail, dealing first with enclosures with full width vents and then those with partial width vents.

In enclosures with full width vents the origin of the flames was always the edge closest to the vent of the remaining tray(s) of fuel (Figures 6 and 7). If initially the fuel in the rear tray(s) was ignited strong burning occurred as the fire moved from tray to tray towards the vent. In all cases the fire moved towards the vent without burning much of the fuel in each tray. Combustion in the rear trays ceased once burning was established in a tray between it and the vent. Once the fire had settled at the front of the front tray(s) the form and stability of the flames depended on the size of the opening. In general, once the fire moved to the front tray(s) the rate of burning appeared to reduce and the fire become less stable. This situation was strongly influenced by the height of the opening. When the opening was at or close to the full height of the enclosure the fire remained reasonably
strong and stable and a stable flow pattern was observed. This flow pattern consisted of cool air moving in at the bottom of the vent, contacting the leading edge of the fuel, taking part in combustion of the fuel and in the process being heated, rising towards the top of the enclosure, the flow splitting near the top of the enclosure with most of the flow moving towards the vent and thus out of the enclosure, and the remaining flow moving back into the rear of the enclosure.


Figure 7 Side View of Fire in Enclosure 600 mm Wide, 1500 mm Deep and 300 mm High Vent 600 mm Wide by 275 mm High

When the full width vent was substantially less than the height of the enclosure and placed at the top of the front wall the fire and flow pattern became unstable and in some cases went out. The instability seemed to come about because the in-flowing cool air moved into the enclosure over the sill in very close proximity to the out-flowing fire gases. In such cases, provided the fire remained
alight long enough to burn all of the fuel in the front tray, when the fire progressed to the second and subsequent trays the fire became more stable, in some cases the mass loss rate increased, and the flows in the enclosure became stronger and more clearly defined. The flames always extended across the width of the enclosure but the thickness of the flames low in the enclosure (close to the tray) was quite small. There was thickening (spreading) of the flames as they rose in the enclosure and began to flow forward. Only the flow towards the vent was clearly identifiable as a stable flow because there were always flames (and generally some smoke) visible. The flow towards the rear appeared intermittent, but this may only be because there were few and intermittent flames visible in this region. Clearly the majority of the flames were directed towards the front of the enclosure. When the tray closest to the back wall began to burn, there was some thickening of the flames low in the enclosure and sometimes more burning took place over the surface of the fuel. Thus there seemed to be some effect of the rear wall on the fire and flow in the enclosure when the fire came close to it.


Figure 8 Views of Fire in Enclosure 1500 mm Wide, $\mathbf{6 0 0} \mathbf{m m}$ Deep and 300 mm High Vent 1500 mm Wide by 275 mm High

In $\mathbf{3 0 0} \mathbf{~ m m}$ deep enclosures with full width vents of height over half of the height of the enclosure, the flames appeared to virtually fill the enclosure as even those from the front edge of the tray initially moved towards the back of the enclosure, then vertically and then (near the top of the enclosure) towards the front to sometimes form large flame extensions outside the enclosure, occasionally with pronounced periodicity (Figure 9). However, in these enclosures the flames appeared to cover more of the surface of the fuel somewhat like the behaviour in the shielded tray tests described above.


Flames appear to fill enclosure
Figure 9 Side View of Fire in Enclosure 300 mm Wide, $\mathbf{3 0 0} \mathbf{~ m m}$ Deep and 300 mm High, Vent 300 mm Wide by 275 mm High

In wide enclosures (from 600 mm to 1500 mm were tested) $\mathbf{3 0 0} \mathbf{~ m m}$ deep, all of the trays of fuel burned at once. In wide enclosures (again from 600 mm to 1500 mm were tested) $\mathbf{6 0 0} \mathbf{~ m m}$ deep, the front row of trays burned first and then the rear row. When a tray in the front row burned out the burning immediately transferred, but only to the tray directly behind. Looked at from the side the appearance of the fire in these enclosures was essentially the same as if the enclosure was only 300 mm wide except for occasional overlaps as burning moved from one row of trays to the next.

That is, the flows were two dimensional and a strip through the enclosure from front to back would accurately represent the appearance of the entire enclosure. In these enclosures there often seemed to be a slight "end effect" at each end of the enclosure with generally somewhat lower luminosity flames and lesser flame extensions near the end than the middle of the enclosure. Occasionally this was reversed and large flame extensions occurred at one end or the other. The "end effect" was reflected in the situation that generally the middle trays burnt out first and the end trays continued to blaze for a short time after the middle trays ran out of fuel.

In enclosures of depth $\mathbf{6 0 0}, \mathbf{9 0 0}, \mathbf{1 2 0 0}$ and $\mathbf{1 5 0 0} \mathbf{~ m m}$, when the fuel was ignited only the front tray (or row of trays) continued to burn - there was no sign of flames from the trays further from the ventilation opening (Figures 6 and 7). Once the fuel in the first tray (or row) was consumed and as the flames in that tray were going out the fuel in the second tray ignited. The fuel in this tray then burned until consumed when the third tray ignited and so on. Thus, in these enclosures, except for a brief time following first ignition and momentarily when the fuel in one tray was almost consumed and the fuel in the next tray ignited, burning only occurred in one tray (or row) at a time.

The flame extensions from the enclosures were often very high in the high ventilation (fast burning) tests, but were minimal in the lowest ventilation tests. In the $\mathbf{6 0 0}, \mathbf{9 0 0}, \mathbf{1 2 0 0}$ and $\mathbf{1 5 0 0} \mathbf{~ m m}$ deep enclosures flames from all of the trays when burning (including the rear trays) generally extended the full length of the enclosure and out of the opening. As mentioned above the flame front was generally thin, particularly when there was plenty of fuel in the burning tray. As fuel in a tray burned out the flames appeared to become thicker (but not uniformly over the full width of the enclosure) and as the flames in the nearly burned out tray contracted the fuel in the tray behind started flaming. In the new tray the flames were initially thick but as flaming became well established across the width of the tray the thickness of the flames decreased.

In enclosures with full width vents the outgoing flow of fire gases consistently occupied about the top third of the enclosure and vent. This was clearly observed in many tests and was also clearly defined in soot deposits on the glass side used in many tests.

In the enclosures with partial width vents the flows in the enclosures became more complex. When the fire was ignited the fire always settled immediately in or quickly migrated to the tray(s) directly adjacent to the vent. The appearance and behaviour of the fire was then essentially the same whether the enclosure was wide or long while ever the burning was taking place near the vent. However, in long enclosures once the fuel near the opening was burnt the behaviour except near the vent became very similar to that in similar enclosures with full width openings.

Once the fire in enclosures with partial width openings was established the flame front could clearly be seen to extend only over a width of the trays equal to the width of the opening (Figure 10). The flames could be seen to then spread laterally to some extent as they moved into the enclosure and upward. Other than this, the main flow was similar to that in the enclosures with full width vents in that the main flow consisted of flames and fire gases initially moving towards the top of the enclosure, then towards and out of the vent. When viewed from the side a small portion of the flow was observed to move (apparently intermittently) back into the rear of the enclosure. Because of the lateral spread of the fire gases as they moved through the enclosure towards the vent, they were wider than the vent when they arrived at the front wall (and vent). Consequently, while a substantial portion moved through the vent and out of the enclosure, the remainder were deflected back into the enclosure in the regions on either side of the vent. These flows appeared to circulate through the enclosure and then move back towards the vent colliding in the middle of the enclosure underneath the main outward flow mentioned above and then exiting through the vent under the main flow.

It was apparent in tests on enclosures with partial width vents that the flow through the vent generally occupied about a half to two-thirds of the height of the vent for most of the time.


Figure 10 Front Views of Fire in Enclosure 1500 mm Wide, 600 mm Deep and 300 mm High Vent 300 mm wide by 275 mm High

When the fuel in the tray(s) closest to the vent was exhausted the burning then moved to the trays immediately behind them. At this stage it was generally possible to see virtually a "tunnel" through which the inward air flowed surrounded by flames from similar flows to those described above and some flames from the trays in the front row on either side of the vent.

Once the fuel from these trays was burnt the fire generally progressed to the trays adjacent to those already burnt, with the fire effectively splitting into two, on each side of the vent. Except for the area of the vent, each side, when viewed from the front was similar to a fire in a long enclosure viewed from the side. That is, the two dimensional flow described above. However, in this case there were two symmetrically opposite flows that collided in the middle and formed a combined "spiralling vortex" flow out of the vent, again generally filling the top two-thirds of the vent.

While the burning was taking place near the vent there was a large flare outside the enclosure. It appears that the lateral flows mentioned above were picking up large quantities of fuel and transporting them out of the enclosure where they burned. A somewhat similar behaviour occurred in long enclosures with full width vents at some ventilation levels, when a stable situation of burning of vapourised fuel in the vent (without oxygen entering the enclosure) occurred. This also occurred in larger scale low ventilation wood crib tests reported elsewhere ${ }^{5,6}$. Generally however, it appears that the three dimensional flows are more effective in transporting vapourised fuel out of the enclosure than the two dimensional flow as bigger flares were generally present in the former case.

Another form of behaviour that was observed was for the burning to continue to take place near trays near the vent even after they, and occasionally the adjacent trays, were empty. Again vapourised fuel was clearly being transported towards the vent but the burning was taking place just inside the vent rather than outside.

The order of burning (emptying) of the trays in the 1500 mm wide by 600 mm deep enclosures was generally (Figure 2) 8, 3, 2 and 4,7 and 9,1 and 5 , and finally 6 and 10 .

## Experimental Results

The remaining fuel mass was recorded throughout the tests for all of the tests in the open and for all enclosure tests with steel and steel and glass enclosures. It was not obtained in tests in calcium silicate board enclosures.

The variation in remaining fuel mass with time for trays burned in the open is shown in Figure 11. The responses are reasonably linear (Figure 11 (a) and (b)) apart from the beginning and end of each test. The response for the ten tray tests is considerably more non-linear than the single and five tray tests. Figure 11 (c) compares the mass history of the single trays with those of the five and ten tray tests on a "per tray" basis. It can be seen that on this basis the histories are essentially identical for the single and five tray tests but significantly different for the ten tray tests. The mass loss rate was considerably higher for the ten tray tests than for the others for much of the time. This is despite the fact that the burnout times reported above for the multiple tray tests were both longer than for the single tray tests.

The results of the enclosure tests are summarised in Appendix A, Table A1. The table shows details of the geometry of the enclosure for each test, the construction materials and the maximum temperature and burnout time. The situations in which stable burning did not occur are not shown in the table. (The term stable is used herein to describe tests in which the fire did not selfextinguish before all the fuel was consumed. In unstable situations the fire self-extinguished before all of the fuel was burnt, generally soon after ignition.) Tests were initially attempted with vent widths equal to the width of the enclosure and vent heights of $100 \%, 75 \%, 50 \%$ and $25 \%$ of the height of the enclosure. If the fire self-extinguished at one of these ventilation levels intermediate vent heights were tried and if stable burning occurred the results appear in the table.

The fuel mass histories for the enclosure tests are shown in Figures 12 and 13. In Figures 12 and 13 when the vent is the full width of the enclosure the only vent dimension given is the height ( mm ), but when the vent width is less than the width of the enclosure both the width and height are given thus: width/height (both mm ). Similarly, when the vent is at the bottom of the wall, a suffix "b" is added to the label, when the vent is at the top of the wall no suffix is given. The other letters in the label are simply to distinguish each tests.

Inspection of these figures reveals that generally the response was quite linear, more-so than for the tests in the open (Figure 11) and also that there was generally extremely good reproducibility of the results for each enclosure and vent configuration. Because of the linearity of the response the overall burnout time provides a good basis for estimating the overall average rate of mass loss, although the estimate will be slightly lower than the actual rate because of the slow-down in mass loss rate just before burnout.


(c) Enclosures 300 mm Wide by 900 mm Deep by Vent Height

Figure 12 Fuel Mass Histories for Enclosures 200 mm High

(d) Enclosures 300 mm Wide by 1200 mm Deep (Vent 200 mm High)

(e) Enclosures 300 mm Wide by 1500 mm Deep by Vent Height

Figure 12 Fuel Mass Histories for Enclosures 200 mm High (continued)


Figure 12 Fuel Mass Histories for Enclosures 200 mm High (continued)


Figure 13 Fuel Mass Histories for Enclosures $\mathbf{3 0 0} \mathbf{~ m m}$ High

(d) Enclosures 300 mm Wide by 1200 mm Deep (Vent 275 mm High)

(e) Enclosures 300 mm Wide by 1500 mm Deep by Vent Height

(f) Enclosures 600 mm Wide by 1500 mm Deep by Vent Height

Figure 13 Fuel Mass Histories for Enclosures $\mathbf{3 0 0}$ mm High (continued)


Figure 13 Fuel Mass Histories for Enclosures 300 mm High (continued)

In Figure 12 (a) it can be seen that the mass loss for the 200 mm opening height is quicker than for the 150 mm opening height, which in turn is quicker than for the 100 mm opening height. The pattern is generally similar throughout Figures 12 and 13, although in Figures 12 (a) and (e) the lines for the 150 and 200 mm vent heights are very close compared with the lines for the 100 mm vent heights. Similarly in Figures 13 (a), (g) and (h) the lines for 275 and 225 mm vent heights are very close compared with those for smaller opening heights.

Also notable in several graphs of Figure 13 is the non-linearity of the responses for enclosures with partial width vents. This is shown more clearly in Reference 1, and reflects the phases of burning that occur in enclosures with this vent configuration ${ }^{1}$.

The temperature responses in representative tests are shown in Figure 14. In Figure 14(a) the single thermocouple trace shows the typically rapid rise and fall in temperature following ignition and burnout in the 300 mm cube shaped enclosure.

Figure 14(b) shows the traces for the two thermocouples in a 600 mm long enclosure. Both thermocouples initially rise quickly, the thermocouple at the front of the enclosure more to a higher temperature than that at the rear. The temperatures at both positions remain relatively constant while the front tray burns, then both rise when the second tray burns. Again they are both relatively constant while this tray burns and then fall rapidly when the fuel is exhausted. It is notable that the front thermocouple "sees" higher temperatures and high temperatures for much longer than the rear thermocouple. Thus, the severity of the fire is much greater in the front of the enclosure than in the rear.

The three traces in Figure 14 (c) show the very similar temperatures recorded through most of the fire by the three thermocouples in the 900 mm wide by 300 mm deep enclosure. It shows that there is little variation in temperature across the width of a wide enclosure with full width variation, and none of the systematic variation shown in Figure 14 (d) through the depth of an enclosure 300 mm wide by 900 mm deep. The three quite distinct traces in Figure 14(d) for the 900 mm deep enclosure show the four phases in burning in deep enclosures with full width openings:

1. the initial rapid temperature rise of all three thermocouples reflects the initial, very short, ignition of all three trays of fuel which happened in this test and usually happens if the ambient temperature is high enough
2. the distinctly higher temperature in thermocouple T 1 early in the test reflects the continued burning of tray 1 (closest to the ventilation opening)
3. the rise in temperature of thermocouple 2 about one-third of the way through the test reflects the burnout of tray 1 and the ignition of tray 2
4. the rise in temperature of thermocouple 3 about two-thirds of the way through the test reflects the burnout of tray 2 and the ignition of tray 3

The temperature of the thermocouple closest to the opening (thermocouple 1) remains higher than the others for most of the test, only falling slightly below the others close to the end of the test.

The thermocouple traces shown in Figures 14(e) and (f) show similar stages of burning in 1500 mm deep enclosures, with, after an initial brief ignition of all five trays, burning progressing from the ventilated end of the enclosure to the closed end. Note that in Figure 14(f) the time of burning for the front tray is much greater than for the other trays, and that the burning time for each tray gets progressively less moving from the front to the rear of the enclosure. The previous figures (Figure 14(b) to (e) are similar in this respect but the successive reductions in burning time are less than in Figure 14(f).


Figure 14 Examples of Temperature - Time Curves for Various Enclosure Configurations


Figure 14 Examples of Temperature - Time Curves for Various Enclosure Configurations (continued)


Figure 14 Examples of Temperature - Time Curves for Various Enclosure Configurations (continued)

| $\begin{gathered} \mathrm{T} \\ \mathrm{~h}=300 \mathrm{~mm} \end{gathered}$ | H-300 mm | T1\&T6 | T2\&T7 | T3\&T8 | T4\&T9 | T5\&T10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{s}=0 \mathrm{~mm}$ |  |  |  |  |  |  |
| $\mathrm{W}=\mathrm{w}=600 \mathrm{~mm}$ <br> Front |  |  |  | 1500 m <br> Side |  |  |

## Elevations


(g) Test SFOE119: material $=$ steel and glass

| T6 \& T1 | T7 \& T2 | $\begin{gathered} \mathrm{T} 8 \& \mathrm{~T} 3 \\ \mathrm{~h}=300 \mathrm{~mm} \end{gathered}$ | T9 \& T4 | T10 \& T5 | $\mathrm{H}=300 \mathrm{~mm}$ | T6 to T10 | T1 to T5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |
| $\mathrm{s}=0 \mathrm{~mm}$ |  |  |  |  |  |  |  |
| $\mathrm{W}=\mathrm{W}=1500 \mathrm{~mm}$ |  |  |  |  |  |  |  |
| Front |  |  |  |  |  |  |  |
| Elevations |  |  |  |  |  |  |  |


(h) Test SFOS137: material = steel

Figure 14 Examples of Temperature - Time Curves for Various Enclosure Configurations (continued)


Figure 14 Examples of Temperature - Time Curves for Various Enclosure Configurations (continued)

In Figures $14(\mathrm{~g})$ and (h) both show the thermocouple traces for enclosures 600 mm by 1500 mm in plan. The first is 1500 mm deep, the second 1500 mm wide. In Figure $14(\mathrm{~g})$ comparison of the traces for each of the pairs of thermocouples equal distances from the vent shows that they always remain very similar, and overall the pattern of change through the test is very similar to that for the 300 mm wide by 1500 mm deep enclosure (Figure 14 (e)). In Figure 14 (h) it is clear that the temperatures of the rear thermocouples remain well below those of the front thermocouples for the first part of the test while the front trays were burning, and then they were all very similar while the rear trays were burning.

The enclosures in Figures 14 (i) and (j) both had partial width vents, rather than the full width vents in Figures 14 (a) to (h). The thermocouple traces are notably different from those for the similar size enclosures in Figures 14 (g) and (h). Firstly, the durations of the fires were longer with the partial width openings, but not nearly as much longer as might be expected from a simple comparison of the vent widths (the vent heights being very similar) ${ }^{1}$. Secondly, the thermocouple traces for other than the front thermocouples are lower for much longer in the enclosures with the partial width vents than in the enclosures with full width vents. This reflects greater transportation of the fuel to towards the vent and it being burned in the region close to the vent in these enclosures ${ }^{1}$. However the basic pattern is identical: the fuel closest to the ventilation opening burns first, with the fuel furthest from the vent (and those with the most "difficult" gas flows in the case of the wide partial width vent enclosures) burn last. Thus, in Figure 14 (i), the remaining fuel in trays T 3 and T8, then T4 and T9, and finally T5 and T10 burn after the fuel in trays T1, T2, T6 and T7 is exhausted. In Figure 14 (j) the traces confirm the visual observations that burning takes place in the regions of tray T 8 first, then T 3 and T 8 , then T 2 and T 4 , followed by T 7 and T 9 , then T 1 and T 5 and finally T 6 and T 10 .


Figure 15 Temperature - Time Curves Near Top and Bottom of Enclosure
In none of the enclosures represented by these graphs was the temperature anything like uniform throughout even the upper level of the enclosure represented by these traces. Even greater
temperature differences exist in such enclosures when temperatures near the floor are considered. This is illustrated in Figure 15 which shows the temperatures measured by the usual thermocouples near the top of an enclosure and the temperature measured near the floor at the rear of the enclosure ( 25 mm from floor, 20 mm from rear wall on centreline).

The temperature differential between the top of the enclosure and the bottom even at the rear of the enclosure was very substantial for most of the test. This indicates a strong driving force for a circulation cell between the fire front and the rear of the enclosure as well as the observed strong flow between the vent and the fire.

## Discussion

In considering fire severity there are two basic parameters - the temperatures reached and the duration of the high temperatures. In these tests the simplest time measure reflecting the duration of high temperatures is simply the burnout time - that is the time from ignition to final flame out. As mentioned above it also represents a good measure of the burning rate when used in conjunction with the total mass of fuel in the enclosure.

Thus a useful measure of the overall average burning rate in the tests represented by Table A1 is given by $R(\mathrm{MJ} / \mathrm{s})$, defined as follows:

$$
R=\frac{F_{l} \times 27}{t_{b}}
$$

where:
$F_{l}$ is the total fire load in the enclosure ( kg ), and
$\mathrm{t}_{\mathrm{b}}$ is the burnout time (s)
The only input variables throughout these tests have been the geometry of the enclosure and vent, and the wall materials. Considering a relationship of the form

$$
R=c \times W^{c_{W}} \times D^{c_{D}} \times H^{c_{H}} \times w^{c_{W}} \times h^{c_{n}}
$$

a least squares regression may be used to evaluate the terms $c, c_{W}, c_{D}, c_{H}, c_{w}$ and $c_{h}$.
If this is done on the data as a whole a good correlation between the actual and predicted $R$ results:

$$
R=0.476 \times W^{0.485} \times D^{-0.006} \times H^{0.180} \times w^{0.591} \times h^{0.858}
$$

Figure 16 shows a comparison of the actual values of and that predicted by this expression.
However, close examination of this figure reveals that in some regions this expression does not provide a good representation of the data, although the overall representation is adequate. Consequently, the data has been analysed using this expression in three distinct regions which have been identified after extensive analysis of the data:

1. $D / W \geq 2$
2. $D / W<2$ and $w / W=1$
3. $D / W<2$ and $w / W<1$


Figure 16 Scatter Diagram of Actual and Predicted Average Mass Loss Rate


Figure 17 Scatter Diagram of Actual and Predicted Average Mass Loss Rate

The following combination of formulae provides a good correlation with the data:
If $D / W \geq 2$

$$
R=1.601 \times W^{0.715} \times D^{-0.367} \times H^{0.952} \times w^{0.404} \times h^{1.06}
$$

If $D / W<2$ and $w / W=1 \quad R=0.517 \times D^{0.166} \times H^{0.0973} \times w^{0.968_{w}} \times h^{0.827}$
If $D / W<2$ and $w / W<1 \quad R=3.56 \times D^{0.727} \times w^{0.879} \times h^{1.75}$

(Correlation coefficient $\left(\mathrm{R}^{2}=0.93\right)$ )
Figure 18 Scatter Diagram of Actual and Predicted Average Mass Loss Rate
Looking at each region separately:

- $D / W \geq 2$

(Correlation coefficient $\left(\mathrm{R}^{2}=0.98\right)$ )
Figure 18 Scatter Diagram of Actual and Predicted Average Mass Loss Rate
- $D / W<2$ and $w / W=1$

(Correlation coefficient $\left(\mathrm{R}^{2}=0.91\right)$ )
Figure 20 Scatter Diagram of Actual and Predicted Average Mass Loss Rate
- $D / W<2$ and $w / W<1$

(Correlation coefficient $\left(\mathrm{R}^{2}=0.97\right)$ )
Figure 21 Scatter Diagram of Actual and Predicted Average Mass Loss Rate
It is of note that only in the last of these do the powers of the vent width $(0.879)$ and the vent height (1.75) approximate the usually adopted figures of 1 and 1.5 respectively. It is, of course, possible to incorporate the usual (that is, ) term in the expressions but all that this does is result in compensating values of the powers for and , or alternatively compromises the fit of the expressions.

The maximum temperature shows a large amount of variability as shown in Figure 22 where it is plotted against the burnout time. A log-linear relationship represented by the plotted line provides a reasonable estimate, somewhat better than a straight line fit. Complex relationships of the variables as used in the correlations for the rate of burning provide only a slightly better fit.


Figure 21 Maximum Temperature Variation with Burnout Time
The main feature of the fires in these enclosures is that "flashover" does not occur and that uniform conditions do not occur, indeed, cannot occur if the flows necessary to sustain the supply of oxygen to the fire are to exist.


## Acknowledgments

The author is grateful to Rob Ralph, Michael Culton and Paul Tisch for carrying out the experimental program and to Ian Bennetts for support and valuable discussions.

## References

1. Thomas, I.R. and Bennetts, I.D., Fires in Enclosures with Single Ventilation Openings Comparison of Long and Wide Enclosures, Submitted for IAFSS Symposium 1999.
2. Drysdale, D., An Introduction to Fire Dynamics, Wiley (1985).

## Appendix A

| $\begin{gathered} \mathbf{H} \\ (\mathrm{mm}) \end{gathered}$ | $\begin{gathered} \mathbf{W} \\ (\mathrm{mm}) \end{gathered}$ | $\begin{gathered} \mathrm{D} \\ (\mathrm{~mm}) \end{gathered}$ | $\begin{gathered} \mathbf{w} \\ (\mathrm{mm}) \end{gathered}$ | $\begin{gathered} \mathrm{h} \\ (\mathrm{~mm}) \end{gathered}$ | $\underset{(\mathbf{m m})}{\mathbf{s}}$ | Material | $\begin{aligned} & \mathbf{t}_{\mathbf{b}} \\ & (\mathbf{s}) \\ & \hline \end{aligned}$ | $\begin{gathered} \mathbf{T}_{\mathrm{m}} \\ \left({ }^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$ | Test |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 200 | 300 | 300 | 300 | 100 | 100 | Steel | 765 | 765 | SH104 |
| 200 | 300 | 300 | 300 | 150 | 50 | Steel | 453 | 755 | S3Q96 |
| 200 | 300 | 300 | 300 | 200 | 0 | Steel | 411 | 802 | SO92 |
| 200 | 300 | 300 | 300 | 200 | 0 | Steel \& glass | 392 | 764 | SGFOE217HT |
| 200 | 300 | 600 | 300 | 200 | 0 | Steel \& glass | 956 | 695 | SGFOE216 |
| 200 | 300 | 900 | 300 | 140 | 60 | Steel | 2505 | 707 | SH106 |
| 200 | 300 | 900 | 300 | 150 | 50 | Steel | 2669 | 729 | S3Q103 |
| 200 | 300 | 900 | 300 | 200 | 0 | Steel | 1860 | 720 | SO100 |
| 200 | 300 | 900 | 300 | 200 | 0 | Steel \& glass | 1896 | 731 | SGFOE214 |
| 200 | 300 | 1200 | 300 | 200 | 0 | Steel \& glass | 2975 | 775 | SGFOE211 |
| 200 | 300 | 1500 | 300 | 150 | 50 | Steel | 5455 | 714 | S3Q108 |
| 200 | 300 | 1500 | 300 | 175 | 25 | CaSi | 3562 | 758 | CFOE224 |
| 200 | 300 | 1500 | 300 | 200 | 0 | Steel | 4238 | 703 | SO110 |
| 200 | 300 | 1500 | 300 | 200 | 0 | Steel \& glass | 4375 | 739 | SGFOE210 |
| 200 | 900 | 300 | 900 | 100 | 100 | Steel | 630 | 760 | SH109 |
| 200 | 900 | 300 | 900 | 200 | 0 | Steel | 367 | 857 | SO111 |
| 200 | 1500 | 300 | 1500 | 100 | 100 | Steel | 955 | 719 | SH105 |
| 200 | 1500 | 300 | 1500 | 150 | 50 | Steel | 369 | 868 | S3Q99 |
| 200 | 1500 | 300 | 1500 | 200 | 0 | Steel | 397 | 871 | SO95 |
| 300 | 300 | 300 | 300 | 95 | 205 | CaSi | 1035 | 694 | CQ31 |
| 300 | 300 | 300 | 300 | 95 | 205 | Steel | 1129 | 689 | SQ85 |
| 300 | 300 | 300 | 300 | 95 | 205 | Steel | 1393 | 695 | SQ30 |
| 300 | 300 | 300 | 300 | 150 | 150 | CaSi | 383 | 760 | CH75 |
| 300 | 300 | 300 | 300 | 150 | 150 | CaSi | 414 | 772 | CH17 |
| 300 | 300 | 300 | 300 | 150 | 150 | CaSi | 420 | 755 | CH48 |
| 300 | 300 | 300 | 300 | 150 | 150 | Steel | 427 | 723 | SH84 |
| 300 | 300 | 300 | 300 | 150 | 150 | Steel | 546 | 739 | SH13 |
| 300 | 300 | 300 | 300 | 150 | 150 | Steel | 573 | 730 | SH35 |
| 300 | 300 | 300 | 300 | 225 | 75 | CaSi | 208 | 856 | C3Q86 |
| 300 | 300 | 300 | 300 | 225 | 75 | CaSi | 215 | 840 | C3Q58 |
| 300 | 300 | 300 | 300 | 225 | 75 | CaSi | 235 | 840 | C3Q6 |
| 300 | 300 | 300 | 300 | 225 | 75 | Steel | 269 | 778 | S3Q12 |
| 300 | 300 | 300 | 300 | 225 | 75 | Steel | 274 | 819 | S3Q36 |
| 300 | 300 | 300 | 300 | 225 | 75 | Steel | 284 | 799 | S3Q71 |
| 300 | 300 | 300 | 300 | 275 | 25 | Steel | 291 | 813 | SO41 |
| 300 | 300 | 300 | 300 | 275 | 25 | Steel | 293 | 803 | S1 |
| 300 | 300 | 300 | 300 | 275 | 25 | Steel | 295 | 839 | SO11 |
| 300 | 300 | 300 | 300 | 275 | 25 | Steel | 315 | 825 | SO66 |
| 300 | 300 | 300 | 300 | 275 | 25 | Steel \& glass | 297 | 799 | SGFOE215HT |


| $\underset{(\mathrm{mm})}{\mathrm{H}}$ | $\begin{gathered} \mathbf{W} \\ (\mathbf{m m}) \end{gathered}$ | $\begin{gathered} \mathrm{D} \\ (\mathrm{~mm}) \end{gathered}$ | $\begin{gathered} \mathbf{w} \\ (\mathrm{mm}) \end{gathered}$ | $\begin{gathered} \mathbf{h} \\ (\mathrm{mm}) \end{gathered}$ | $\underset{(\mathrm{mm})}{\mathbf{s}}$ | Material | $\begin{gathered} \mathbf{t}_{\mathbf{b}} \\ (\mathbf{s}) \end{gathered}$ | $\begin{gathered} \mathbf{T}_{\mathrm{m}} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$ | Test |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 300 | 300 | 300 | 300 | 300 | 0 | CaSi | 243 | 902 | C5 |
| 300 | 300 | 300 | 300 | 300 | 0 | CaSi | 243 | 906 | CO33 |
| 300 | 300 | 300 | 300 | 300 | 0 | CaSi | 255 | 893 | C6 |
| 300 | 300 | 300 | 300 | 300 | 0 | CaSi | 270 | 892 | CO5 |
| 300 | 300 | 300 | 300 | 300 | 0 | CaSi | 283 | 932 | CO82 |
| 300 | 300 | 600 | 300 | 275 | 25 | Steel \& glass | 564 | 770 | SGFOE213 |
| 300 | 300 | 900 | 140 | 275 | 25 | Steel | 1266 | 712 | SV54 |
| 300 | 300 | 900 | 140 | 275 | 25 | Steel | 1300 | 704 | SV64 |
| 300 | 300 | 900 | 300 | 180 | 0 | Steel | 1612 | 740 | SQ102 |
| 300 | 300 | 900 | 300 | 180 | 0 | Steel | 1838 | 690 | SQ52 |
| 300 | 300 | 900 | 300 | 180 | 120 | Steel | 1343 | 735 | SQ51 |
| 300 | 300 | 900 | 300 | 180 | 120 | Steel | 1517 | 751 | SH62 |
| 300 | 300 | 900 | 300 | 180 | 120 | Steel | 1538 | 740 | SQ101 |
| 300 | 300 | 900 | 300 | 225 | 75 | Steel | 1039 | 761 | S3Q61 |
| 300 | 300 | 900 | 300 | 225 | 75 | Steel | 1075 | 732 | SQ60 |
| 300 | 300 | 900 | 300 | 225 | 75 | Steel | 1075 | 772 | S3Q83 |
| 300 | 300 | 900 | 300 | 275 | 25 | Steel | 817 | 756 | SO74 |
| 300 | 300 | 900 | 300 | 275 | 25 | Steel | 828 | 756 | S7 |
| 300 | 300 | 900 | 300 | 275 | 25 | Steel | 864 | 759 | SO47 |
| 300 | 300 | 900 | 300 | 275 | 25 | Steel | 920 | 745 | SO59 |
| 300 | 300 | 900 | 300 | 275 | 25 | Steel \& glass | 885 | 787 | SGFOE212 |
| 300 | 300 | 1200 | 300 | 275 | 25 | Steel \& glass | 1287 | 799 | SGFOE209 |
| 300 | 300 | 1500 | 300 | 225 | 75 | Steel | 2224 | 743 | S3Q63 |
| 300 | 300 | 1500 | 300 | 225 | 75 | Steel | 2355 | 726 | S3Q65 |
| 300 | 300 | 1500 | 300 | 225 | 75 | Steel | 2451 | 742 | S3Q79 |
| 300 | 300 | 1500 | 300 | 275 | 25 | Steel | 1648 | 765 | S8 |
| 300 | 300 | 1500 | 300 | 275 | 25 | Steel | 1734 | 736 | SO70 |
| 300 | 300 | 1500 | 300 | 275 | 25 | Steel | 1772 | 758 | SO46 |
| 300 | 300 | 1500 | 300 | 275 | 25 | Steel | 1786 | 753 | SO55 |
| 300 | 300 | 1500 | 300 | 275 | 25 | Steel | 1907 | 754 | SO57 |
| 300 | 300 | 1500 | 300 | 275 | 25 | Steel \& glass | 1887 | 766 | SGFOE207 |
| 300 | 300 | 1500 | 300 | 300 | 0 | CaSi | 1724 | 787 | CFOE223 |
| 300 | 300 | 1500 | 300 | 300 | 0 | CaSi | 1737 | 784 | CSFOE220 |
| 300 | 600 | 1500 | 200 | 275 | 25 | Steel \& glass | 2684 | 744 | SPOE144 |
| 300 | 600 | 1500 | 200 | 275 | 25 | Steel \& glass | 2688 | 740 | SPOE143 |
| 300 | 600 | 1500 | 300 | 275 | 25 | Steel \& glass | 2200 | 853 | SPOE141 |
| 300 | 600 | 1500 | 300 | 275 | 25 | Steel \& glass | 2208 | 814 | SPOE142 |
| 300 | 600 | 1500 | 600 | 150 | 150 | Steel | 3190 | 817 | SFOE97 |
| 300 | 600 | 1500 | 600 | 225 | 75 | Steel | 1903 | 810 | SFOE96 |
| 300 | 600 | 1500 | 600 | 300 | 0 | Steel | 1515 | 823 | SFOE95 |
| 300 | 600 | 1500 | 600 | 300 | 0 | Steel | 1592 | 776 | SFOE94 |
| 300 | 600 | 1500 | 600 | 300 | 0 | Steel | 1605 | 809 | SFOE119 |
| 300 | 600 | 1500 | 600 | 300 | 0 | Steel | 1669 | 822 | SFOE93 |


| $\begin{gathered} \mathrm{H} \\ (\mathrm{~mm}) \end{gathered}$ | $\begin{gathered} W \\ (\mathrm{~mm}) \end{gathered}$ | $\begin{gathered} \mathrm{D} \\ (\mathrm{~mm}) \end{gathered}$ | $\begin{gathered} \mathbf{w} \\ (\mathrm{mm}) \end{gathered}$ | $\begin{gathered} \mathbf{h} \\ (\mathrm{mm}) \end{gathered}$ | $\begin{gathered} \mathbf{s} \\ (\mathrm{mm}) \end{gathered}$ | Material | $\begin{gathered} \mathbf{t}_{\mathbf{b}} \\ (\mathbf{s}) \\ \hline \end{gathered}$ | $\begin{gathered} \mathbf{T}_{\mathbf{m}} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$ | Test |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 300 | 900 | 300 | 900 | 75 | 225 | CaSi | 1305 | 662 | CQ19 |
| 300 | 900 | 300 | 900 | 75 | 225 | CaSi | 1335 | 653 | CQ45 |
| 300 | 900 | 300 | 900 | 75 | 225 | CaSi | 1357 | 694 | CQ81 |
| 300 | 900 | 300 | 900 | 75 | 225 | Steel | 1350 | 703 | SQ23 |
| 300 | 900 | 300 | 900 | 75 | 225 | Steel | 1401 | 682 | SQ38 |
| 300 | 900 | 300 | 900 | 150 | 150 | CaSi | 328 | 818 | CH16 |
| 300 | 900 | 300 | 900 | 150 | 150 | CaSi | 330 | 773 | CH78 |
| 300 | 900 | 300 | 900 | 150 | 150 | CaSi | 377 | 787 | CH32 |
| 300 | 900 | 300 | 900 | 150 | 150 | Steel | 395 | 752 | SH37 |
| 300 | 900 | 300 | 900 | 150 | 150 | Steel | 400 | 798 | SH21 |
| 300 | 900 | 300 | 900 | 225 | 75 | CaSi | 214 | 898 | C3Q72 |
| 300 | 900 | 300 | 900 | 225 | 75 | CaSi | 254 | 851 | C3Q4 |
| 300 | 900 | 300 | 900 | 225 | 75 | CaSi | 349 | 862 | C3Q53 |
| 300 | 900 | 300 | 900 | 225 | 75 | Steel | 302 | 872 | S3Q10 |
| 300 | 900 | 300 | 900 | 225 | 75 | Steel | 317 | 851 | S3Q26 |
| 300 | 900 | 300 | 900 | 225 | 75 | Steel | 351 | 900 | S3Q113 |
| 300 | 900 | 300 | 900 | 275 | 25 | Steel | 291 | 891 | SO67 |
| 300 | 900 | 300 | 900 | 275 | 25 | Steel | 302 | 903 | S2 |
| 300 | 900 | 300 | 900 | 275 | 25 | Steel | 316 | 896 | SO9 |
| 300 | 900 | 300 | 900 | 275 | 25 | Steel | 318 | 906 | SO40 |
| 300 | 900 | 300 | 900 | 300 | 0 | CaSi | 246 | 888 | C4 |
| 300 | 900 | 300 | 900 | 300 | 0 | CaSi | 246 | 917 | C073 |
| 300 | 900 | 300 | 900 | 300 | 0 | CaSi | 252 | 892 | CO3 |
| 300 | 900 | 300 | 900 | 300 | 0 | CaSi | 262 | 916 | CO34 |
| 300 | 900 | 300 | 900 | 300 | 0 | CaSi | 264 | 899 | C1 |
| 300 | 1500 | 300 | 300 | 75 | 25 | Steel \& glass | . | . | SPOSB125 |
| 300 | 1500 | 300 | 300 | 150 | 25 | Steel \& glass | 2385 | 743 | SPOSB124 |
| 300 | 1500 | 300 | 300 | 225 | 25 | Steel | 1270 | 858 | SPOSB123 |
| 300 | 1500 | 300 | 300 | 225 | 75 | Steel | 1465 | 908 | SPOST121 |
| 300 | 1500 | 300 | 300 | 275 | 25 | Steel | 1041 | 909 | SPOS120 |
| 300 | 1500 | 300 | 1500 | 75 | 225 | CaSi | 1225 | 648 | CQ49 |
| 300 | 1500 | 300 | 1500 | 75 | 225 | CaSi | 1419 | 756 | CQ80 |
| 300 | 1500 | 300 | 1500 | 75 | 225 | CaSi | 1476 | 743 | CQ20 |
| 300 | 1500 | 300 | 1500 | 75 | 225 | Steel | 1168 | 726 | SQ24 |
| 300 | 1500 | 300 | 1500 | 75 | 225 | Steel | 1232 | 704 | SQ42 |
| 300 | 1500 | 300 | 1500 | 75 | 225 | Steel | 1379 | 656 | SQ97 |
| 300 | 1500 | 300 | 1500 | 150 | 150 | CaSi | 357 | 796 | CH15 |
| 300 | 1500 | 300 | 1500 | 150 | 150 | CaSi | 361 | 824 | CH77 |
| 300 | 1500 | 300 | 1500 | 150 | 150 | CaSi | 375 | 827 | CH44 |
| 300 | 1500 | 300 | 1500 | 150 | 150 | Steel | 395 | 790 | SH25 |
| 300 | 1500 | 300 | 1500 | 150 | 150 | Steel | 395 | 813 | SH56 |
| 300 | 1500 | 300 | 1500 | 150 | 150 | Steel | 499 | 739 | SH94 |
| 300 | 1500 | 300 | 1500 | 225 | 75 | CaSi | 226 | 889 | C3Q14 |
| 300 | 1500 | 300 | 1500 | 225 | 75 | CaSi | 235 | 888 | C3Q43 |
| 300 | 1500 | 300 | 1500 | 225 | 75 | CaSi | 288 | 879 | C3Q76 |
| 300 | 1500 | 300 | 1500 | 225 | 75 | Steel | 313 | 860 | S3Q8 |
| 300 | 1500 | 300 | 1500 | 225 | 75 | Steel | 345 | 857 | S3Q27 |
| 300 | 1500 | 300 | 1500 | 225 | 75 | Steel | 374 | 831 | S3Q91 |


| $\begin{gathered} \mathrm{H} \\ (\mathrm{~mm}) \end{gathered}$ | $\begin{gathered} \mathbf{W} \\ (\mathrm{mm}) \end{gathered}$ | $\begin{gathered} \mathrm{D} \\ (\mathrm{~mm}) \end{gathered}$ | $\begin{gathered} \mathbf{w} \\ (\mathrm{mm}) \end{gathered}$ | $\begin{gathered} \mathrm{h} \\ (\mathrm{~mm}) \end{gathered}$ | $\underset{(\mathrm{mm})}{\mathbf{s}}$ | Material | $\begin{gathered} \mathbf{t}_{\mathbf{b}} \\ (\mathbf{s}) \end{gathered}$ | $\begin{gathered} \mathbf{T}_{\mathbf{m}} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$ | Test |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 300 | 1500 | 300 | 1500 | 275 | 25 | Steel | 270 | 894 | S3 |
| 300 | 1500 | 300 | 1500 | 275 | 25 | Steel | 328 | 900 | SO39 |
| 300 | 1500 | 300 | 1500 | 275 | 25 | Steel | 335 | 925 | SO68 |
| 300 | 1500 | 300 | 1500 | 275 | 25 | Steel | 350 | 910 | SO7 |
| 300 | 1500 | 300 | 1500 | 300 | 0 | CaSi | 254 | 898 | CO1 |
| 300 | 1500 | 300 | 1500 | 300 | 0 | CaSi | 254 | 914 | CO69 |
| 300 | 1500 | 300 | 1500 | 300 | 0 | CaSi | 255 | 890 | C2 |
| 300 | 1500 | 300 | 1500 | 300 | 0 | CaSi | 272 | 889 | CO 2 |
| 300 | 1500 | 300 | 1500 | 300 | 0 | CaSi | 285 | . | C1? |
| 300 | 1500 | 600 | 200 | 275 | 25 | Steel \& glass | 1595 | 787 | SPOS146 |
| 300 | 1500 | 600 | 200 | 275 | 25 | Steel \& glass | 1615 | 768 | SPOS145 |
| 300 | 1500 | 600 | 300 | 150 | 25 | Steel \& glass | 5483 | 687 | SPOSB138 |
| 300 | 1500 | 600 | 300 | 150 | 25 | Steel \& glass | 5587 | 673 | SPOSB130 |
| 300 | 1500 | 600 | 300 | 150 | 150 | Steel \& glass | . | - | SPOST135 |
| 300 | 1500 | 600 | 300 | 225 | 25 | Steel \& glass | 1672 | 772 | SPOSB136 |
| 300 | 1500 | 600 | 300 | 225 | 25 | Steel \& glass | 1710 | 815 | SPOSB129 |
| 300 | 1500 | 600 | 300 | 225 | 75 | Steel \& glass | 1770 | 845 | SPOST127 |
| 300 | 1500 | 600 | 300 | 225 | 75 | Steel \& glass | 1780 | 862 | SPOST134 |
| 300 | 1500 | 600 | 300 | 225 | 75 | Steel \& glass | 1808 | 790 | SPOST128 |
| 300 | 1500 | 600 | 300 | 275 | 25 | Steel \& glass | 1125 | 813 | SPOS133 |
| 300 | 1500 | 600 | 300 | 275 | 25 | Steel \& glass | 1212 | 802 | SPOS126 |
| 300 | 1500 | 600 | 600 | 75 | 25 | Steel \& glass | . | $\cdot$ | SPOS131 |
| 300 | 1500 | 600 | 600 | 225 | 75 | Steel \& glass | 840 | 898 | SPOST139 |
| 300 | 1500 | 600 | 600 | 225 | 75 | Steel \& glass | 860 | 912 | SPOST140 |
| 300 | 1500 | 600 | 600 | 275 | 25 | Steel \& glass | 707 | 939 | SPOS132 |
| 300 | 1500 | 600 | 1500 | 275 | 25 | Steel | 475 | 909 | SFOS137 |
| 300 | 1500 | 600 | 1500 | 300 | 0 | Steel | 480 | 925 | SPOS147 |

In Table A1, apart from the dimensions mentioned above the following quantities are tabulated for each test:

- material type $(\mathrm{CaSi}=$ calcium silicate board, steel $=$ steel plate, steel and glass $=$ steel enclosure with one wall of glass)
- time from ignition to burnout $\left(\mathrm{t}_{\mathrm{b}}\right)$ in seconds
- maximum temperature $\left(\mathrm{T}_{\mathrm{m}}\right)$ in ${ }^{\circ} \mathrm{C}$


## Attachment 3

# Investigation of the Effect of Fuel Position on Fire Severity in Long Enclosures 

by<br>I R Thomas<br>BHP Research Melbourne Laboratories

## Introduction

The severity of possible fires in a building must be estimated in order to properly develop an engineering design of the fire safety system for the building. The severity of a fire in an enclosure is dependent on a number of factors including the size, shape and ventilation of the enclosure and the fire load in the enclosure. In investigating the severity of fires to be considered in estimating the fire resistance requirements for barrier and structural elements for buildings it became apparent that the rate of burning (as measured by the mass loss rate) varied with the position of the burning fuel in long enclosures.

A comparison of fire severity in long and wide enclosures with single vents has been reported previously ${ }^{1}$. Another factor of importance that has previously been reported is the effect of the position of the openings in each end of enclosures with two vents ${ }^{2}$. Reference 2 included a comparison of the cross ventilation (two vent) cases with single vent cases in identical shape and size enclosures. The severity of fires in small enclosures with uniform fire load (that is, fire load uniformly distributed over the floor area of the enclosures) has previously been reported ${ }^{3}$.

The rate of burning (as measured by heat release rate or mass loss rate) in enclosure fires is usually assumed to be proportional to the ventilation factor $A \sqrt{h}{ }^{4}$, which means that it is directly proportional to the vent width $w$ and height $h$ raised to the power 1.5 , that is $h^{1.5}$. Thus, for the same size ventilation openings the same rate of burning is expected. The experimental program reported below investigated the effect of opening shape and size and enclosure shape on the rate of burning in an enclosure with fuel uniformly distributed through the enclosure.


Figure 1 Enclosure Details

The following terminology and nomenclature is used for the clear internal dimensions of the enclosure (Figure 1):

- width (W) - horizontal dimension parallel to the plane of the ventilation opening
- depth (D) - horizontal dimension perpendicular to the plane of the ventilation opening
- height (H) - vertical dimension from the bottom surface to the top surface

The following terminology and nomenclature is used for the dimensions of the ventilation opening:

- opening width (w) - the clear horizontal dimension
- opening height (h) - the clear vertical dimension
- sill height - the vertical dimension from the enclosure floor to the bottom of the opening

The distance from the front of the enclosure (vent) to the front edge of the tray of fuel is denoted by the dimension " $x$ " as in Figure 1.

## Experimental Program

The enclosures used in these tests were all 200 or 300 mm high (interior dimensions). In these tests the roof, floor and walls of made of 3 mm steel plate.

In each of these tests 500 ml of liquid fuel ( $96 \%$ ethanol and $4 \%$ methanol) was placed in one 250 mm square and 25 mm high steel tray which was placed equidistant from the side walls at a specified distance ( x ) from the front of the enclosure (Figure 1).

Temperatures were recorded using five Type K mineral insulated thermocouples with the hot junction exposed. Five thermocouples were placed 20 mm from the roof on the centreline of the enclosure (Figure 2). Thermocouple T1 was placed 150 mm from the front of the enclosure and the remainder at 300 mm centres from there. In some tests an additional thermocouple (T6) was also placed in the enclosure 25 mm from the floor and 20 mm from the rear of the enclosure. Temperature readings were taken every 15 seconds.


Figure 2 Thermocouple Positions and Numbers
The fuel mass loss was recorded by weighing the entire enclosure. The mass loss was recorded manually at 15 second intervals using a digital scale able to resolve to 0.01 kg . The vent and enclosure shapes and sizes tested are shown in Table A1 in Appendix A.

Most of these tests were conducted in the 300 mm wide by 1500 mm deep enclosures, but tests were also conducted in 300, 600, 900 and 1200 mm deep enclosures. Enclosure widths of 300 mm and 600 mm and enclosure heights of 200 and 300 mm were tested.

Trays of fuel were also burned in the open to enable comparison of the burning of a tray of fuel in the open with a tray of fuel at various positions in the enclosures.

## Burning in the Open

Single trays of 500 ml of the liquid fuel ( $96 \%$ ethanol, $4 \%$ methanol) were burned in the open to establish the mode and duration of burning in the free-burn situation. When burned in the open the fuel burned on all sides of the tray with the flames covering the entire tray. The flames were generally symmetrical and central above the tray (Figure 3).


Figure 3 Burning of Single Tray in Open

In the open single trays containing 500 ml burned in an average of 418 seconds (range 394 to 460 , nine tests).

When a tightly fitting steel shield 50 mm high was fitted on three sides of the tray (effectively an extension of the tray height of 25 mm on three sides) 500 ml of fuel burned in an average of 369 seconds (range 364 to 372 , four tests). The only visible effect was simply to move the centre of the plume back slightly (away from the side that had not been "extended"). The burning appeared to take place over the entire surface of the tray and the flame height was unchanged. As the shielding of the three sides was extended in height in 50 mm steps to a maximum of 300 mm there was little further change. The flames still seemed to cover the entire surface, the flame height appeared unchanged and the centre of the plume moved only slightly further back (away from the unextended side).


Figure 4 Fuel Mass Histories for Single Trays Burned in Open

## Tests in Enclosures

In the single tray tests in the 200 mm high and 1500 mm deep enclosures considerable differences were noted between the tests where the tray was placed close to the ventilation opening and those where the tray was placed well back in the enclosure. Some differences were noted in the tests in the 300 mm high and 1500 mm deep enclosures but these were not as significant as for the 200 mm high enclosures.


Figure 5 Side View of Fire in Enclosure 600 mm Deep and 200 mm High

In the 200 mm high enclosures when the edge of the tray was placed right at the end of the enclosure ( $\mathrm{x}=0$ ) the flames consistently reached the ceiling but appeared perhaps slightly "lazy". However, when the tray was moved 50 mm into the enclosure $(x=50)$ the flames were much more variable, changing in luminosity, sometimes almost appearing to extinguish and not to reach the top of the enclosure. When the tray was moved back a further $50 \mathrm{~mm}(x=100)$ the flames were similar to those described above for $\mathrm{x}=0$, and when moved a further 50 mm back $(\mathrm{x}=150)$ the flames were similar to $\mathrm{x}=0$ but stronger, more vigorous, and flames were more often emitted from the enclosure. As the tray was moved further back into the enclosure the flames appeared more vigorous, with a well established flow along the top of the enclosure towards the opening. This flow clearly had strong circular vortices in each top corner of the enclosure with the circulation of the gas and flames being towards the walls at the top and down the walls. Flames were emitted from the opening intermittently as the tray position moved towards the back of the enclosure and consistently when the tray was near the back of the enclosures.

In the case of the 300 mm high enclosures there was much less variation in the appearance of the flames, with the flames for tray positions $0<\mathrm{x}<100$ all appearing quite vigorous. Again, as the tray was positioned further back in the enclosure strong flows along the top of the enclosure with similar vortices, and more consistent flame emission from the opening when the tray was near the back of the enclosure.


Figure 6 Typical Reduction in Fuel Mass with Time - Trays of Liquid Fuel

Time-temperature traces for enclosures of various shapes are shown in Figure 7.

[^8]

300 mm wide, 1500 mm deep, 300 mm high, wall material $=$ steel, $\mathbf{x}=\mathbf{0} \mathbf{~ m m}$


300 mm wide, 1500 mm deep, 200 mm high, wall material $=$ steel, $x=0 \mathbf{~ m m}$

Temperature ( ${ }^{\circ} \mathrm{C}$ )


300 mm wide, 1500 mm deep, 200 mm high, wall material = steel, $x=50 \mathrm{~mm}$


300 mm wide, 1500 mm deep, 200 mm high, wall material $=$ steel, $\mathbf{x}=150 \mathbf{~ m m}$


300 mm wide, 1500 mm deep, 200 mm high, wall material $=$ steel, $x=500 \mathrm{~mm}$


300 mm wide, 1500 mm deep, $\mathbf{3 0 0} \mathbf{~ m m}$ high, wall material $=$ steel, $x=500 \mathrm{~mm}$


300 mm wide, 1500 mm deep, 300 mm high, wall material $=$ steel, $x=1200 \mathbf{~ m m}$


300 mm wide, 1500 mm deep, 200 mm high, wall material $=$ steel, $x=1200 \mathbf{~ m m}$

Temperature ( ${ }^{\circ} \mathrm{C}$ )


300 mm wide, 1500 mm deep, 200 mm high, wall material = steel, $x=1000 \mathbf{~ m m}$ extra thermocouple 20 mm from floor, ??? $\mathbf{~ m m}$ from rear of enclosure on centreline Temperature ( ${ }^{\circ} \mathrm{C}$ )


300 mm wide, 1500 mm deep, 300 mm high, wall material $=$ steel, $x=800 \mathrm{~mm}$ extra thermocouple 20 mm from floor, ??? $\mathbf{~ m m}$ from rear of enclosure on centreline


300 mm wide, 1500 mm deep, 200 mm high, wall material $=$ steel, $x=800 \mathrm{~mm}$ extra thermocouple 20 mm from floor, ??? $\mathbf{~ m m}$ from rear of enclosure on centreline

Figure 7 Examples of Temperature - Time Curves for Various Enclosure Configurations and Tray Positions

The variation in burnout time (tb) with distance between the front face of the tray and the ventilation opening is shown in Figure 8. It is apparent from this figure that there is a considerable difference between results for the two enclosure heights.

In the case of enclosure height 300 mm there is a fairly smooth progression from about 500 seconds when the tray is right at the ventilation opening to about 400 seconds when the tray is as far back in the enclosure as possible. There appears to be some systematic variation as the tray is moved from the front of the enclosure to the back, but this variation is minor in comparison with the variation apparent in the 200 mm height enclosure.

In the 200 mm height enclosure there is a great deal of variation particularly in the region close to the ventilation opening. In this region with the tray right against the opening the tray takes 600+ seconds to burnout, but 50 mm into the enclosure it takes between $850+$ and $900+$ seconds. As the tray is progressively moved into the enclosure the burnout time rapidly falls to about 650 seconds at 150 mm into the enclosure. It then remains reasonably constant until it is about 800 mm into the enclosure where it begins to decrease, reaching a minimum of 450 seconds at 1200 mm .

Burnout Time (s)


Figures 7 (200 and 300H)
Although this complex behaviour indicates that there are complex mechanisms affecting the delivery of oxygen to the fuel it is worthwhile trying to obtain some insight into the overall trends. However, it is obvious that no simple relationships are going to explain or define the variations apparent in Figures? and ?.


Figures 8 (200 and 300H)
A regression analysis has been conducted on the data represented by Figures ? and ? using combinations of the following ratios: $\left(\frac{L}{w h^{1.5}}\right),\left(\frac{L}{w h^{1.5}}\right)\left(\frac{x}{H}\right)$ and $\left(\frac{x}{H}\right)$.

The best fit to the data was obtained with the expression:

$$
t_{b}=289+\left(\frac{L}{w h^{1.5}}\right)\left(0.193\left(\frac{D}{H}\right)-0.0762\left(\frac{x}{H}\right)\right), r^{2}=0.87
$$

The variation in the maximum temperature with position of the tray is shown in Figure ??. Examination of Figure ?? reveals that there is some systematic variation of the maximum temperature with the enclosure height and depth (or $\mathrm{D} / \mathrm{H}$ ). There appears to be little variation with position of the tray in the enclosure.


Figure ?? Variation of Maximum Temperature with $\mathbf{x} / \mathbf{H}$ (Line is mean of all values)

$$
\begin{gathered}
+: \mathrm{D} / \mathrm{H}=1.0, \mathrm{X}: \mathrm{D} / \mathrm{H}=1.5, \mathrm{Y}: \mathrm{D} / \mathrm{H}=3.5, \mathrm{Z}: \mathrm{D} / \mathrm{H}=5.0, \quad: \mathrm{D} / \mathrm{H}=7.5 \\
T_{b}=837-24.4\left(\frac{D}{H}\right)+76.9\left(\frac{x}{D}\right), r^{2}=0.77
\end{gathered}
$$

## Discussion

The significant variation in burnout time with position in the enclosure (particularly for the 200 mm deep enclosure) obviously requires further testing and analysis.

Overall there does seem to be a systematic variation as the fuel is moved further back in the enclosure but the degree of this effect does appear to be related to enclosure height (or perhaps $\mathrm{D} / \mathrm{H}$ ratio).

## Conclusions

This study is not conclusive, but it appears that the mass loss rate varies significantly with tray position

## Acknowledgments

The author is grateful to Rob Ralph, Michael Culton and Paul Tisch for carrying out the experimental program and to Ian Bennetts for support and valuable discussions.

## References

1. Thomas, I.R. and Bennetts, I.D., Fires in Enclosures with Single Ventilation Openings Comparison of Long and Wide Enclosures, Submitted for IAFSS Symposium 1999.
2. Drysdale, D., An Introduction to Fire Dynamics, Wiley (1985).

## Appendix A

Table A1 Data from Single Tray Tests

| Width (mm) | Depth (mm) | Height (mm) | Opening Width (mm) | Opening Height (mm) | Sill <br> Height $(\mathrm{mm})$ | $\begin{gathered} \mathrm{x} \\ (\mathrm{~mm}) \end{gathered}$ | Burnout Time (s) | Maximum Temperature $\left({ }^{\circ} \mathrm{C}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 300 | 300 | 200 | 300 | 200 | 0 | 40 | 411 | 802 |
| 300 | 300 | 300 | 300 | 275 | 25 | 40 | 295 | 839 |
| 300 | 300 | 300 | 300 | 275 | 25 | 40 | 293 | 803 |
| 300 | 300 | 300 | 300 | 275 | 25 | 40 | 291 | 813 |
| 300 | 300 | 300 | 300 | 275 | 25 | 40 | 315 | 825 |
| 300 | 900 | 300 | 300 | 275 | 25 | 40 | 396 | 795 |
| 300 | 900 | 300 | 300 | 275 | 25 | 330 | 337 | 765 |
| 300 | 900 | 300 | 300 | 275 | 25 | 620 | 360 | 780 |
| 300 | 1500 | 200 | 300 | 200 | 0 | 330 | 679 | 686 |
| 300 | 1500 | 200 | 300 | 200 | 0 | 620 | 712 | 642 |
| 300 | 1500 | 200 | 300 | 200 | 0 | 910 | 645 | 650 |
| 300 | 1500 | 200 | 300 | 200 | 0 | 40 | 843 | 603 |
| 300 | 1500 | 200 | 300 | 200 | 0 | 1200 | 467 | 709 |
| 300 | 1500 | 200 | 300 | 200 | 0 | 40 | 910 | 652 |
| 300 | 1500 | 200 | 300 | 200 | 0 | 1200 | 463 | 724 |
| 300 | 1500 | 200 | 300 | 200 | 0 | 330 | 603 | 636 |
| 300 | 1500 | 200 | 300 | 200 | 0 | 620 | 748 | 642 |
| 300 | 1500 | 200 | 300 | 200 | 0 | 910 | 660 | 690 |
| 300 | 1500 | 200 | 300 | 200 | 0 | 0 | 635 | 683 |
| 300 | 1500 | 200 | 300 | 200 | 0 | 50 | 848 | 604 |
| 300 | 1500 | 200 | 300 | 200 | 0 | 100 | 770 | 659 |
| 300 | 1500 | 200 | 300 | 200 | 0 | 150 | 650 | 747 |
| 300 | 1500 | 200 | 300 | 200 | 0 | 200 | 645 | 685 |
| 300 | 1500 | 200 | 300 | 200 | 0 | 250 | 691 | 692 |
| 300 | 1500 | 200 | 300 | 200 | 0 | 300 | 672 | 682 |
| 300 | 1500 | 200 | 300 | 200 | 0 | 350 | 655 | 662 |
| 300 | 1500 | 200 | 300 | 200 | 0 | 400 | 640 | 672 |
| 300 | 1500 | 200 | 300 | 200 | 0 | 450 | 658 | 666 |
| 300 | 1500 | 200 | 300 | 200 | 0 | 500 | 693 | 675 |
| 300 | 1500 | 200 | 300 | 200 | 0 | 550 | 699 | 678 |
| 300 | 1500 | 200 | 300 | 200 | 0 | 600 | 701 | 713 |
| 300 | 1500 | 200 | 300 | 200 | 0 | 700 | 680 | 707 |
| 300 | 1500 | 200 | 300 | 200 | 0 | 800 | 663 | 682 |
| 300 | 1500 | 200 | 300 | 200 | 0 | 900 | 695 | 711 |
| 300 | 1500 | 200 | 300 | 200 | 0 | 1000 | 570 | 684 |
| 300 | 1500 | 200 | 300 | 200 | 0 | 1100 | 498 | 709 |
| 300 | 1500 | 200 | 300 | 200 | 0 | 1200 | 471 | 734 |
| 300 | 1500 | 200 | 300 | 200 | 0 | 1250 | 522 | 789 |
| 300 | 1500 | 200 | 300 | 200 | 0 | 0 | 665 | 612 |
| 300 | 1500 | 300 | 300 | 275 | 25 | 40 | 470 | 740 |
| 300 | 1500 | 300 | 300 | 275 | 25 | 330 | 442 | 727 |
| 300 | 1500 | 300 | 300 | 275 | 25 | 620 | 413 | 726 |
| 300 | 1500 | 300 | 300 | 275 | 25 | 910 | 405 | 738 |
| 300 | 1500 | 300 | 300 | 275 | 25 | 1200 | 363 | 800 |
| 300 | 1500 | 300 | 300 | 275 | 25 | 910 | 372 | 740 |
| 300 | 1500 | 300 | 300 | 275 | 25 | 40 | 480 | 738 |


| Width <br> $(\mathbf{m m})$ | Depth <br> $(\mathbf{m m})$ | Height <br> $(\mathbf{m m})$ | Opening <br> Width <br> $(\mathbf{m m})$ | Opening <br> Height <br> $(\mathbf{m m})$ | Sill <br> Height <br> $(\mathbf{m m})$ | $\mathbf{x}$ <br> $(\mathbf{m m})$ | Burnout <br> Time (s) | Maximum <br> Temperature <br> $\left({ }^{\circ} \mathbf{C}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 300 | 1500 | 300 | 300 | 275 | 25 | 330 | 435 | 736 |
| 300 | 1500 | 300 | 300 | 275 | 25 | 620 | 431 | 731 |
| 300 | 1500 | 300 | 300 | 275 | 25 | 1200 | 363 | 791 |
| 300 | 1500 | 300 | 300 | 275 | 25 | 50 | 471 | 735 |
| 300 | 1500 | 300 | 300 | 275 | 25 | 0 | 506 | 688 |
| 300 | 1500 | 300 | 300 | 275 | 25 | 100 | 446 | 732 |
| 300 | 1500 | 300 | 300 | 275 | 25 | 150 | 434 | 758 |
| 300 | 1500 | 300 | 300 | 275 | 25 | 200 | 426 | 740 |
| 300 | 1500 | 300 | 300 | 275 | 25 | 250 | 393 | 735 |
| 300 | 1500 | 300 | 300 | 275 | 25 | 300 | 372 | 733 |
| 300 | 1500 | 300 | 300 | 275 | 25 | 350 | 412 | 755 |
| 300 | 1500 | 300 | 300 | 275 | 25 | 400 | 418 | 735 |
| 300 | 1500 | 300 | 300 | 275 | 25 | 450 | 418 | 735 |
| 300 | 1500 | 300 | 300 | 275 | 25 | 500 | 424 | 746 |
| 300 | 1500 | 300 | 300 | 275 | 25 | 550 | 433 | 731 |
| 300 | 1500 | 300 | 300 | 275 | 25 | 600 | 422 | 768 |
| 300 | 1500 | 300 | 300 | 275 | 25 | 700 | 405 | . |
| 300 | 1500 | 300 | 300 | 275 | 25 | 800 | 405 | 765 |
| 300 | 1500 | 300 | 300 | 275 | 25 | 900 | 360 | 735 |
| 300 | 1500 | 300 | 300 | 275 | 25 | 1000 | 420 | 759 |
| 300 | 1500 | 300 | 300 | 275 | 25 | 1100 | 403 | 749 |
| 300 | 1500 | 300 | 300 | 275 | 25 | 1200 | 393 | 796 |
| 300 | 1500 | 300 | 300 | 275 | 25 | 1250 | 429 | 818 |

## Attachment 4

# CIB Tests of Fire Severity in Single Vent Enclosures with Uniform Fire Load 

by<br>I R Thomas<br>CESARE<br>Victoria University of Technology

## Introduction

The severity of possible fires in a building must be estimated in order to properly develop an engineering design of the fire safety system for the building. The severity of a fire in an enclosure is dependent on a number of factors including the size, shape and ventilation of the enclosure and the fire load in the enclosure. In investigating the severity of fires to be considered in estimating the fire resistance requirements for barrier and structural elements for buildings it became apparent that the estimates obtained using available fire models and correlation formulae were unreliable for the broad range of enclosure sizes, shapes and ventilation arrangements that are possible.

A comparison of fire severity in long and wide enclosures with single vents has been reported previously ${ }^{1}$.

The rate of burning (as measured by heat release rate $\dot{Q}$ or mass loss rate $R$ ) in fully developed enclosure fires is usually assumed to be proportional to the ventilation factor $A \sqrt{h}^{2}$ where $A$ is the area of the vent and $h$ the vent height. This means that it is assumed that the burning rate is directly proportional to the vent width $w$ and vent height raised to the power 1.5:

$$
\begin{equation*}
R_{8030}=a_{1} w h^{1.5} \tag{1}
\end{equation*}
$$

Thus, for the same size ventilation openings the same rate of burning is expected.
This paper examines data from an international test program conducted under the auspices of CIB by eight laboratories in several countries ${ }^{3}$. Wood cribs with a variety of wood species, stick thicknesses and spacings were burned in enclosures of various shapes and sizes. A variety of relationships between the mean rate of burning, mean intensity of radiation and mean temperatures were developed based on the experimental results and others have been published since, largely based on this data.

The original data have not been available for this study. This study and the analysis that follows have been based on summary data ${ }^{3}$. This data consists of results of individual tests and results that are the average of a number of tests. Unfortunately, for such groups of tests, only the average results are known - there was no data on the variability or range of results within the group. Consequently, in what follows, each result for a specific combination of the input variables is treated as though it represented a single test.

The following terminology and nomenclature is used for the clear internal dimensions of the enclosure (Figure 1):

- width (W) - horizontal dimension parallel to the plane of the ventilation opening
- depth (D) - horizontal dimension perpendicular to the plane of the ventilation opening
- height $(\mathrm{H})$ - vertical dimension from the bottom surface to the top surface

The following terminology and nomenclature is used for the dimensions of the ventilation opening:

- opening width (w) - the clear horizontal dimension
- opening height (h) - the clear vertical dimension
- sill height - the vertical dimension from the enclosure floor to the bottom of the opening


During tests the mass of the remaining fuel was recorded along with the temperatures at the centre of the enclosure at heights of $25 \%$ and $75 \%$ of the ceiling height ( $\mathrm{T}_{\mathrm{b}}$ and $\mathrm{T}_{\mathrm{c}}$ respectively) and the intensity of radiation at two points. The record of fuel mass was used to calculate the mean rate of burning during the period when the fuel mass went from $80 \%$ of the original mass to $30 \%$, and this is recorded in Table A1 as $\mathrm{R}_{8030}(\mathrm{~g} / \mathrm{s})$. The temperature records were used to determine average temperatures during the same time period and are shown in Table A1 as $\mathrm{T}_{\mathrm{b} 8030}$ and $\mathrm{T}_{\mathrm{c} 8030}\left({ }^{\circ} \mathrm{C}\right)$.

A single centrally located crib was used in each enclosure, with the plan dimensions of the crib being 0.833 of the plan dimensions of the enclosure. The sticks used in the cribs were 10,20 and 40 mm thick and were spaced $0.33,1.0$ or 3.0 stick thicknesses apart as noted for each test in Table A1. The fires were lit using kerosene soaked strips between every pair of the lowest layer of sticks over the front third of each crib.

## Experimental Results

## Burning Rates

The data in Table A1 are ordered by ventilation opening width, opening height and by $\mathrm{R}_{8030}$. Examination of the data reveals that for the same ventilation opening there are gross discrepancies in the mean burning rates $\left(\mathrm{R}_{8030}\right)$ (and also the temperatures $\mathrm{T}_{\mathrm{b} 8030}$ and $\left.\mathrm{T}_{\mathrm{c} 8030}\right)$. A summary of the range of $\mathrm{R}_{8030}$ for each ventilation opening size is given in Table 1.

It can be seen in Table 1 that there are very wide variations in both mass loss rate and temperatures. For example, for an opening 250 mm wide by 500 mm deep the maximum mass loss rate is 4.4 times the minimum. This degree of variation is not exceptional, the maximum multiplier on mass loss rate being over 50 for the 500 mm by 500 mm size vent.

Table 1 Range of $\mathbf{R}_{\mathbf{8 0 3 0}}$ for Each Ventilation Opening Size

| Vent Size <br> w $\times \mathrm{h}$ <br> $(\mathrm{mm})$ | Number of Tests | Range of $\mathrm{R}_{8030}$ <br> (g/s) | Range of <br> Maximum of <br> $\mathrm{T}_{\text {b } 8030}$ and <br> $\mathrm{T}_{\text {c803 }}\left({ }^{\circ} \mathrm{C}\right)$ |
| :---: | :---: | :---: | :---: |
| $125 \times 500$ | 5 | 3.5 to 4.7 | 399 to 643 <br> 511 to 712 |
| $250 \times 500$ | 15 | 2.8 to 12.2 | 273 to 952 <br> 521 to 945 |
| $250 \times 1000$ | 15 | 13.5 to 25 | 393 to 869 <br> 609 to 937 |
| $500 \times 500$ | 17 | 0.5 to 27.8 | 139 to 934 <br> 118 to 921 |
| $500 \times 1000$ | 29 | 30.5 to 72.8 | 286 to 1036 <br> 568 to 1058 |
| $750 \times 1500$ | 15 | 48 to 168 | 529 to 1054 <br> 643 to 1145 |
| $1000 \times 500$ | 12 | 11.2 to 36.8 | 187 to 888 <br> 556 to 868 |
| $1000 \times 1000$ | 22 | 5.7 to 93.8 | 234 to 1015 <br> 190 to 1035 |
| $1500 \times 1000$ | 1 | 119 | 587 <br> 783 |
| $1500 \times 1500$ | 3 | 240 to 283 | 546 to 698 <br> 825 to 919 |
| $2000 \times 500$ | 2 | 47.3 to 48 | 357 to 564 <br> 625 to 643 |
| $2000 \times 1000$ | 29 | 28.2 to 139 | 252 to 948 <br> 451 to 998 |
| $3000 \times 1500$ | 18 | 32 to 425 | 336 to 873 <br> 251 to 987 |
| $4500 \times 1500$ | 1 | 370 | 768 <br> 961 |
| $6000 \times 1500$ | 3 | 355 to 479 | 816 to 940 <br> 918 to 1047 |

Reviewing the data in Table A1 it becomes obvious that the variables that appear to have the greatest systematic effect on the mass loss rate $\mathrm{R}_{8030}$ are the enclosure width, the stick spacing ( 0.3333 particularly, there seems little difference in effect for stick spacings of 1 and 3 ) and the vent or enclosure height (the two were identical in this test program). It appears that the fire load density and the stick thickness have very little effect.

Figure 2 shows the variation of $\mathrm{R}_{8030}$ against the enclosure width, enclosure depth, vent width, vent height (= enclosure height in this data), fire load density stick thickness and stick spacing. It can be seen that $\mathrm{R}_{8030}$ correlates best with the enclosure width $\mathrm{W}\left(\mathrm{r}^{2}=0.81\right)$, reasonably well with the enclosure depth $D\left(r^{2}=0.59\right)$, vent width $w\left(r^{2}=0.54\right)$, and vent height $h\left(r^{2}=0.46\right)$, but poorly with the fire load density, stick thickness and stick spacing (all with $\mathrm{r}^{2}<0.01$ ).


Figure 2 Correlation of Mass Loss Rate with Various Variables

(g) Stick Spacing (stick thicknesses)

Figure 2 Correlation of Mass Loss Rate with Various Variables (continued)
A least squares regression analysis using an expression of the form:

$$
R_{8030}=a_{1} w^{a 2} h^{a 3} W^{a 4} D^{a 5} t_{s t}^{a 6} s_{s t}^{a 7} L_{d}^{a 8}
$$

where

$$
\begin{aligned}
& R_{8030}=\text { mass loss rate }(\mathrm{g} / \mathrm{s}) \\
& a_{1}, a_{2}, \text { etc }=\text { regression parameters } \\
& t_{s t}=\text { stick thickness }(\mathrm{m}) \\
& s_{s t}=\text { stick spacing }(\text { stick thicknesses }) \\
& L_{d}=\text { fire load density }\left(\mathrm{kg} / \mathrm{m}^{2}\right)
\end{aligned}
$$

results in the following expression:

$$
\begin{equation*}
R_{8030}=60.4 w^{0.24} h^{0.45} W^{1.00} D^{0.24} t_{s t}^{0.16} s_{s t}^{0.51} L_{d}^{-0.09} \quad\left(r^{2}=0.94\right) \tag{2}
\end{equation*}
$$

Or, if $\dot{Q}_{8030}=$ heat release rate (MW) based on a heat of combustion of $17 \mathrm{MJ} / \mathrm{kg}$ of wood

$$
\begin{equation*}
\dot{Q}_{8030}=1.03 w^{0.24} h^{0.45} W^{1.00} D^{0.24} t_{s t}^{0.16} s_{s t}^{0.51} L_{d}^{-0.09} \quad\left(r^{2}=0.94\right) \tag{2A}
\end{equation*}
$$

The terms in equations 2 and 2A involving the enclosure depth, stick thickness and fire load density have very little effect in improving the correlation and the following simpler expression provides almost as good a fit:

$$
\begin{equation*}
R_{8030}=20.0 w^{0.24} h^{0.12} W^{1.42} s_{s t}^{0.441} \quad\left(r^{2}=0.94\right) \tag{3}
\end{equation*}
$$

or

$$
\begin{equation*}
\dot{Q}_{8030}=0.34 w^{0.24} h^{0.12} W^{1.42} s_{s t}^{0.441} \quad\left(r^{2}=0.94\right) \tag{3A}
\end{equation*}
$$

In this expression the majority of the variation in the mass loss rate is associated with variation of the width of the enclosure, with minor adjustments provided by the other terms. Figure 3 is a scatter diagram showing a comparison of the experimental mass loss rate with that predicted by Equation 3. It can be seen that $95 \%$ of the experimental points are within about $\pm 40 \mathrm{~g} / \mathrm{s}$ of the line.


Figure 3 Comparison of Estimated and Experimentally Determined Mass Loss Rates
If only the vent dimensions and stick spacing are included in the expression then the relationship in Equation 4 results, but the correlation is not nearly as good, as shown in Figure 4. This implies that the mass loss rate is not simply a function of the vent dimensions as is usually assumed.

$$
\begin{equation*}
R_{8030}=53.5 w^{0.543} h^{1.90} s_{s t}^{0.217} \quad\left(r^{2}=0.70\right) \tag{4}
\end{equation*}
$$

or

$$
\begin{equation*}
\dot{Q}_{8030}=0.91 w^{0.543} h^{1.90} s_{s t}^{0.217} \quad\left(r^{2}=0.70\right) \tag{4A}
\end{equation*}
$$



Figure 4 Comparison of Estimated and Experimentally Determined Mass Loss Rates Estimate Based on Vent Dimensions and Stick Spacing (Equation 4) Only

It is noteworthy that the correlation of the burning rate with the pair of variables $h$ and $w\left(r^{2}=0.70\right)$ is also clearly not as good as with the single variable $W\left(r^{2}=0.81\right)$ and that the correlation of any pair of variables incorporating $W$ is much better than the pair of variables $h$ and $w\left(r^{2}>0.90\right.$ compared with $r^{2}=0.70$ ).

In a previous report ${ }^{1}$ it has been shown that there is a difference in the rate of burning (mass loss) and in the burning behaviour in enclosures with $w / W=1$ compared with those where $w / W<1$. This was done by direct comparison of long and wide enclosures of the same shapes and with
identical openings, but in one case with the openings in the long side and in the other with the openings in the short side. In this (CIB) data there limited opportunities for such comparisons, but those that are possible are set out in Table 2.

Table 2 Comparison of Enclosures with the Same Vent Sizes and w/W =1 and w/W <1

| w | h | W | D | H | StSp | $\begin{gathered} \dot{Q} \\ (\mathrm{w} / \mathrm{W}<1) \end{gathered}$ | $\begin{gathered} \dot{Q} \\ (\mathrm{w} / \mathrm{W}=1) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 500 | 500 | 1000 or 500 | 500 or 1000 | 500 | 0.33 | 0.20 | 0.01 |
|  |  |  |  |  | 1 | 0.20, 0.22 | 0.10, 0.13 |
|  |  |  |  |  | 3 | 0.27, 0.31 | 0.13, 0.15 |
| 1000 | 1000 | 2000 or 1000 | 1000 or 2000 | 1000 | 1 | $\begin{gathered} \hline 0.70,0.88, \\ 0.95 \end{gathered}$ | $\begin{aligned} & \hline 0.36,0.60, \\ & 0.63,0.63, \\ & 0.65,0.67 \\ & \hline \end{aligned}$ |
|  |  |  |  |  | 3 | 1.51, 1.59 | $\begin{aligned} & \hline 0.77,0.83 \\ & 0.88,0.91, \\ & 0.93,0.97 \\ & \hline \end{aligned}$ |

Examination of Table 2 shows that there is clearly a similar trend in this data. In cases with $w / W<$ $l$ the mass loss rate is always greater than for similar cases with $w / W=1$ even though the range of $W / D$ in this case is quite limited in comparison with that in Reference 1.

An alternative way of looking at the effect of $w / W$ is to compare the ratios of the measured burning rates to those calculated using Equation 1 (the Kawagoe formula). Table 3 shows these ratios for the major $\mathrm{w} / \mathrm{W}$ and stick spacing cases covered by the data.

Table 3 Ratio of Measured Burning Rate to Rate Calculated Using Equation 1

| $w / W$ | Stick Spacing <br>  <br>  <br> 0.25 | Mean | Range |
| :---: | :---: | :---: | :---: |
|  |  | 1.15 | $0.80-1.7$ |
| 0.5 | 3 | 1.17 | $0.90-1.5$ |
|  | 1 | 0.76 | $0.45-1.1$ |
|  | 3 | 0.94 | $0.84-1.1$ |

Examination of Table 3 reveals that for each of the $w / W$ ratios there are comparatively small differences between the means and ranges of the ratio for the stick spacings of 1 and 3 . There are much larger and obviously systematic differences in the means and ranges of the ratio as $w / W$ increases from 0.25 to 1.0. Thus it is clear that for this data:

- there is a substantial and systematic decrease in the ratio of the measured burning rate to the burning rate calculated using Equation 1 with increase in $w / W$ ratio
- there is comparatively little variation in this ratio with increase in stick spacing from 1 to 3 stick thicknesses

Thus, it is of interest to note the results when regression analysis is applied to the data if the whole data set is divided into the two groups, $w / W=1$ and $w / W<1$. The results are as follows:
$w / W=1$

When all of the variables are taken into account

$$
\begin{equation*}
R_{8030}=0.67 w^{0.23} h^{0.24} W^{1.00} D^{0.40} t_{s t}^{0.17} s_{s t}^{0.64} L_{d}^{0.00} \quad\left(r^{2}=0.90\right) \tag{5}
\end{equation*}
$$

Without the less important terms

$$
\begin{equation*}
R_{8030}=0.27 w^{0.88} h^{-0.27} W^{1.00} s_{s t}^{0.55} \quad\left(r^{2}=0.94\right) \tag{6}
\end{equation*}
$$

As w $=\mathrm{W}$

$$
\begin{equation*}
R_{8030}=0.27 w^{1.88} h^{-0.27} s_{s t}^{0.55} \quad\left(r^{2}=0.94\right) \tag{7}
\end{equation*}
$$

$w / W<1$
When all of the variables are taken into account

$$
\begin{equation*}
R_{8030}=1.73 w^{0.30} h^{0.77} W^{1.00} D^{-0.02} t_{s t}^{0.20} s_{s t}^{0.35} L_{d}^{-0.14} \quad\left(r^{2}=0.97\right) \tag{8}
\end{equation*}
$$

Without the less important terms

$$
\begin{equation*}
R_{8030}=0.52 w^{0.34} h^{0.69} W^{1.00} s_{s t}^{0.31} \quad\left(r^{2}=0.97\right) \tag{9}
\end{equation*}
$$

Without $W$ and the less important terms (to make comparable with Equation 7)

$$
\begin{equation*}
R_{8030}=1.22 w^{0.71} h^{1.89} s_{s t}^{0.23} \quad\left(r^{2}=0.94\right) \tag{10}
\end{equation*}
$$

It is notable that in both cases when all of the variables are incorporated in the analysis that the rate is directly proportional to the enclosure width $W$ as it was in the overall case (Equations 2 and 2A). It is also noteworthy that in the case for $w / W=1$, when the less important terms are dropped from the analysis, that the resulting negative power for the opening height h implies that the rate reduces as the opening height increases, which is intuitively incorrect and is opposite from the evident trend found experimentally (Figure 2(D)). This occurs because $w$ and $h$ are quite highly correlated and in the resulting regression expression the main variation of the rate is modelled using the opening width w , with the opening height h providing a minor correction. This situation emphasises once more the fact that correlation equations such as those above do not necessarily reflect any direct relationship between the variables, nor is the form of the expression a reflection of any overall relationship between the variables.

## Temperatures

The two recorded maximum temperatures ( $\mathrm{T}_{\mathrm{b} 8030}$ and $\mathrm{T}_{\mathrm{c} 8030}$ ) for each test often differ considerably. However, the temperature at the higher position is usually, but not always, the maximum of the two as Figure 5 shows. In Figure 5 the maximum of $\mathrm{T}_{\mathrm{b} 8030}$ and $\mathrm{T}_{\mathrm{c} 8030}$ is compared with $\mathrm{T}_{\mathrm{c} 8030}$. Those points above the line of the majority of points are those for the tests in which $\mathrm{T}_{\mathrm{b} 8030}>\mathrm{T}_{\mathrm{c} 8030}$.


Figure 5 Maximum Temperature in Enclosure
In examining Table A1 in detail it is difficult to see that there is any systematic variation of $\mathrm{T}_{\mathrm{b} 8030}$ and $\mathrm{T}_{\mathrm{c} 8030}$ with any of the recorded test variables. This observation is confirmed in Figure 5 where the maximum of $\mathrm{T}_{\mathrm{b} 8030}$ and $\mathrm{T}_{\mathrm{c} 8030}$ is plotted against each of these variables and the mass loss rate $\mathrm{R}_{8030}$. In these plots the variation in temperature at any particular value of each variable is generally nearly as great as the overall variation in the temperature.


Figure 6 Correlation of Maximum Temperature with Various Variables


Figure 6 Correlation of Maximum Temperature with Various Variables (continued)
A least squares regression analysis using an expression of the form used in Equation 1 results in the following expression

$$
\begin{equation*}
T_{8030}=1002 w^{-0.067} h^{0.11} W^{0.15} D^{-0.053} t_{s t}^{0.10} s_{s t}^{0.03} L_{d}^{0.03} \quad\left(\mathrm{r}^{2}=0.18\right) \tag{11}
\end{equation*}
$$

The estimate of the maximum temperature using this expression along with the estimates of the 95 percentiles of individual results are plotted in Figure 7 along with the experimental points. It can be seen that the variation is extremely large and that the temperature estimate for any particular situation is subject to very large uncertainties $\left( \pm 300^{\circ} \mathrm{C}\right)$.


Figure 7 Measured Maximum Temperature Compared with Estimated Maximum
A similar regression incorporating the total surface area of the enclosure and the variables incorporated in Equation 11 except for W and D results in a slightly lower correlation coefficient ( $\mathrm{r}^{2}$ $=0.14)$ and thus a slightly greater spread in the estimated temperature.

## Discussion

In the discussions above of the previous sets of experimental data the time that the temperature in the test has been above $500^{\circ} \mathrm{C}$ or the burnout time has been used as a basis for estimating the length
of time the fire has lasted. Because of the limited data available for this data set it is not possible to obtain such time data. An estimate of the burnout time may be obtained by dividing the total mass of fuel by $\mathrm{R}_{8030}$.

Thus

$$
\tau=\frac{L_{f}}{R_{8030}}(\mathrm{~s})
$$

where $\quad L_{f}=$ total fire load $(\mathrm{g})$
$R_{8030}=$ mass loss rate ( $\mathrm{g} / \mathrm{s}$ )
provides an estimate of burnout time.

## References

1. Thomas, I.R. and Bennetts, I.D., Fires in Enclosures with Single Ventilation Openings Comparison of Long and Wide Enclosures, Submitted for IAFSS Symposium 1999.
2. Drysdale, D., An Introduction to Fire Dynamics, Wiley (1985).
3. Thomas, P.H. and Heselden, A.J.M., Fully Developed Fires in Single Compartments. A Cooperative Research Programme of the CIB, CIB Report No 20, Fire Research Note 923.

## Appendix A

## Table A1 Data from CIB Tests ${ }^{6}$

| Row | $\begin{gathered} \mathrm{w} \\ (\mathrm{~mm}) \end{gathered}$ | $\begin{aligned} & \mathrm{h}=\mathrm{H} \\ & (\mathrm{~mm}) \end{aligned}$ | $\begin{aligned} & \mathrm{R}_{8030} \\ & (\mathrm{~mm}) \end{aligned}$ | $\begin{gathered} \mathrm{W} \\ (\mathrm{~mm}) \end{gathered}$ | $\begin{gathered} \mathrm{D} \\ (\mathrm{~mm}) \end{gathered}$ | FLD | $\begin{gathered} \mathrm{Stt} \\ (\mathrm{~mm}) \end{gathered}$ | St spac | N | $\begin{gathered} \hline \mathrm{T}_{\mathrm{b}} \\ \left({ }^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$ | $\begin{gathered} \hline \mathrm{T}_{\mathrm{c}} \\ \left({ }^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 125 | 500 | 3.5 | 500 | 1000 | 20 | 2 | 0.3333 | 1 | 643 | 712 |
| 2 | 125 | 500 | 3.7 | 500 | 1000 | 20 | 2 | 1 | 1 | 594 | 695 |
| 3 | 125 | 500 | 4.2 | 500 | 1000 | 20 | 4 | 1 | 1 | 613 | 708 |
| 4 | 125 | 500 | 4.2 | 500 | 1000 | 20 | 1 | 3 | 1 | 399 | 511 |
| 5 | 125 | 500 | 4.7 | 500 | 1000 | 20 | 2 | 3 | 1 | 412 | 543 |
| 6 | 250 | 500 | 2.8 | 500 | 1000 | 20 | 2 | 0.3333 | 1 | 491 | 521 |
| 7 | 250 | 500 | 5.7 | 500 | 1000 | 20 | 4 | 1 | 1 | 643 | 747 |
| 8 | 250 | 500 | 7 | 500 | 1000 | 20 | 1 | 3 | 1 | 468 | 629 |
| 9 | 250 | 500 | 7.3 | 500 | 1000 | 20 | 2 | 3 | 1 | 435 | 672 |
| 10 | 250 | 500 | 7.5 | 500 | 1000 | 20 | 2 | 1 | 1 | 774 | 836 |
| 11 | 250 | 500 | 9 | 1000 | 1000 | 20 | 1 | 3 | 1 | 273 | 638 |
| 12 | 250 | 500 | 10 | 1000 | 1000 | 20 | 2 | 0.3333 | 1 | 725 | 825 |
| 13 | 250 | 500 | 10.5 | 1000 | 500 | 20 | 2 | 0.3333 | 1 | 865 | 945 |
| 14 | 250 | 500 | 10.7 | 1000 | 1000 | 20 | 2 | 3 | 1 | 425 | 659 |
| 15 | 250 | 500 | 10.8 | 1000 | 1000 | 20 | 4 | 1 | 1 | 705 | 662 |
| 16 | 250 | 500 | 11 | 1000 | 500 | 20 | 4 | 1 | 1 | 952 | 918 |
| 17 | 250 | 500 | 11 | 1000 | 1000 | 20 | 2 | 1 | 2 | 638 | 736 |
| 18 | 250 | 500 | 11.2 | 1000 | 500 | 20 | 1 | 3 | 1 | 645 | 689 |
| 19 | 250 | 500 | 11.5 | 1000 | 500 | 20 | 2 | 1 | 2 | 817 | 880 |
| 20 | 250 | 500 | 12.2 | 1000 | 500 | 20 | 2 | 3 | 1 | 842 | 808 |
| 21 | 250 | 1000 | 13.5 | 1000 | 2000 | 40 | 2 | 0.3333 | 1 | 736 | 746 |
| 22 | 250 | 1000 | 14.8 | 1000 | 2000 | 20 | 2 | 0.3333 | 1 | 845 | 873 |
| 23 | 250 | 1000 | 16.7 | 1000 | 2000 | 30 | 2 | 0.3333 | 1 | 823 | 937 |
| 24 | 250 | 1000 | 18.5 | 1000 | 2000 | 20 | 4 | 1 | 1 | 722 | 801 |
| 25 | 250 | 1000 | 20.7 | 1000 | 2000 | 30 | 4 | 1 | 1 | 630 | 716 |
| 26 | 250 | 1000 | 20.7 | 1000 | 2000 | 30 | 1 | 3 | 1 | 393 | 647 |
| 27 | 250 | 1000 | 22 | 1000 | 2000 | 20 | 2 | 3 | 1 | 628 | 684 |
| 28 | 250 | 1000 | 22 | 1000 | 2000 | 40 | 1 | 3 | 1 | 554 | 609 |
| 29 | 250 | 1000 | 22.2 | 1000 | 2000 | 40 | 4 | 1 | 1 | 685 | 779 |
| 30 | 250 | 1000 | 22.7 | 1000 | 2000 | 30 | 2 | 3 | 1 | 428 | 623 |
| 31 | 250 | 1000 | 22.7 | 1000 | 2000 | 40 | 2 | 1 | 10 | 770 | 842 |
| 32 | 250 | 1000 | 22.8 | 1000 | 2000 | 30 | 2 | 1 | 2 | 869 | 892 |
| 33 | 250 | 1000 | 23.3 | 1000 | 2000 | 40 | 2 | 3 | 1 | 532 | 617 |
| 34 | 250 | 1000 | 24 | 1000 | 2000 | 20 | 2 | 1 | 10 | 831 | 867 |
| 35 | 250 | 1000 | 25 | 1000 | 2000 | 20 | 1 | 3 | 1 | 573 | 736 |
| 36 | 500 | 500 | 0.5 | 500 | 1000 | 20 | 2 | 0.3333 | 1 | 139 | 118 |
| 37 | 500 | 500 | 5.8 | 500 | 1000 | 20 | 4 | 1 | 1 | 666 | 775 |
| 38 | 500 | 500 | 7.5 | 500 | 1000 | 20 | 2 | 1 | 1 | 733 | 866 |
| 39 | 500 | 500 | 7.7 | 500 | 1000 | 20 | 1 | 3 | 1 | 377 | 597 |
| 40 | 500 | 500 | 9 | 500 | 1000 | 20 | 2 | 3 | 1 | 373 | 720 |


| Row | $\begin{gathered} \mathrm{w} \\ (\mathrm{~mm}) \\ \hline \end{gathered}$ | $\begin{aligned} & \hline \mathrm{h}=\mathrm{H} \\ & (\mathrm{~mm}) \end{aligned}$ | $\begin{aligned} & \mathrm{R}_{8030} \\ & (\mathrm{~mm}) \end{aligned}$ | $\begin{gathered} \mathrm{W} \\ (\mathrm{~mm}) \end{gathered}$ | $\begin{gathered} \mathrm{D} \\ (\mathrm{~mm}) \\ \hline \end{gathered}$ | FLD | $\begin{array}{\|c\|c\|} \hline \mathrm{St} \mathrm{t} \\ (\mathrm{~mm}) \\ \hline \end{array}$ | St spac | N | $\begin{gathered} \mathrm{T}_{\mathrm{b}} \\ \left({ }^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$ | $\begin{gathered} \mathrm{T}_{\mathrm{c}} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 41 | 500 | 500 | 10.8 | 1000 | 1000 | 20 | 2 | 0.3333 | 1 | 859 | 784 |
| 42 | 500 | 500 | 12 | 1000 | 500 | 20 | 2 | 0.3333 | 1 | 733 | 782 |
| 43 | 500 | 500 | 12 | 1000 | 500 | 20 | 4 | 1 | 1 | 934 | 914 |
| 44 | 500 | 500 | 12.7 | 1000 | 500 | 20 | 2 | 1 | 2 | 865 | 921 |
| 45 | 500 | 500 | 13.3 | 1000 | 1000 | 20 | 2 | 1 | 2 | 712 | 845 |
| 46 | 500 | 500 | 13.7 | 1000 | 1000 | 20 | 1 | 3 | 1 | 274 | 665 |
| 47 | 500 | 500 | 13.8 | 1000 | 1000 | 20 | 2 | 3 | 1 | 530 | 733 |
| 48 | 500 | 500 | 15.8 | 1000 | 500 | 20 | 1 | 3 | 1 | 678 | 672 |
| 49 | 500 | 500 | 15.8 | 1000 | 1000 | 20 | 4 | 1 | 1 | 689 |  |
| 50 | 500 | 500 | 18.2 | 1000 | 500 | 20 | 2 | 3 | 1 | 902 | 693 |
| 51 | 500 | 500 | 21.8 | 2000 | 2000 | 30 | 2 | 1 | 1 | 487 | 572 |
| 52 | 500 | 500 | 27.8 | 2000 | 2000 | 20 | 2 | 1 | 1 | 596 | 598 |
| 53 | 500 | 1000 | 30.5 | 1000 | 2000 | 40 | 2 | 1 | 1 | 655 | 971 |
| 54 | 500 | 1000 | 31.7 | 1000 | 2000 | 20 | 2 | 1 | 1 | 947 | 941 |
| 55 | 500 | 1000 | 32.2 | 1000 | 2000 | 30 | 2 | 1 | 1 | 986 | 1031 |
| 56 | 500 | 1000 | 38.3 | 2000 | 2000 | 40 | 2 | 0.3333 | 1 | 1020 | 956 |
| 57 | 500 | 1000 | 40 | 2000 | 2000 | 20 | 2 | 0.3333 | 1 | 885 | 828 |
| 58 | 500 | 1000 | 41 | 2000 | 1000 | 40 | 2 | 0.3333 | 1 | 820 | 1051 |
| 59 | 500 | 1000 | 42.7 | 2000 | 1000 | 20 | 2 | 0.3333 | 1 | 478 | 699 |
| 60 | 500 | 1000 | 43.8 | 2000 | 2000 | 30 | 2 | 0.3333 | 1 | 1029 | 927 |
| 61 | 500 | 1000 | 47.8 | 2000 | 1000 | 40 | 2 | 1 | 11 | 887 | 1008 |
| 62 | 500 | 1000 | 48.8 | 2000 | 1000 | 30 | 2 | 0.3333 | 1 | 956 | 1058 |
| 63 | 500 | 1000 | 50 | 2000 | 1000 | 20 | 2 | 1 | 12 | 921 | 1042 |
| 64 | 500 | 1000 | 50.2 | 2000 | 1000 | 30 | 4 | 1 | 1 | 961 | 1039 |
| 65 | 500 | 1000 | 51.3 | 2000 | 2000 | 40 | 2 | 1 | 8 | 832 | 908 |
| 66 | 500 | 1000 | 52.7 | 2000 | 1000 | 30 | 2 | 1 | 3 | 916 | 1018 |
| 67 | 500 | 1000 | 52.7 | 2000 | 2000 | 40 | 1 | 3 | 1 | 286 | 643 |
| 68 | 500 | 1000 | 54 | 2000 | 2000 | 30 | 1 | 3 | 1 | 518 | 646 |
| 69 | 500 | 1000 | 54.2 | 2000 | 2000 | 30 | 2 | 1 | 3 | 980 | 913 |
| 70 | 500 | 1000 | 55.8 | 2000 | 2000 | 40 | 4 | 1 | 1 | 883 | 835 |
| 71 | 500 | 1000 | 56 | 2000 | 1000 | 20 | 2 | 3 | 1 | 837 | 977 |
| 72 | 500 | 1000 | 56.2 | 2000 | 2000 | 30 | 2 | 3 | 1 | 607 | 620 |
| 73 | 500 | 1000 | 57 | 2000 | 2000 | 20 | 1 | 3 | 1 | 753 | 635 |
| 74 | 500 | 1000 | 58 | 2000 | 2000 | 20 | 2 | 1 | 9 | 961 | 948 |
| 75 | 500 | 1000 | 58 | 2000 | 2000 | 40 | 2 | 3 | 1 | 381 | 568 |
| 76 | 500 | 1000 | 58.7 | 2000 | 1000 | 20 | 1 | 3 | 1 | 690 | 820 |
| 77 | 500 | 1000 | 59.2 | 2000 | 2000 | 20 | 2 | 3 | 1 | 664 | 591 |
| 78 | 500 | 1000 | 63.5 | 2000 | 1000 | 40 | 4 | 1 | 1 | 902 | 847 |
| 79 | 500 | 1000 | 65.7 | 2000 | 2000 | 30 | 4 | 1 | 1 | 968 | 975 |
| 80 | 500 | 1000 | 68.3 | 2000 | 2000 | 20 | 4 | 1 | 1 | 943 | 885 |
| 81 | 500 | 1000 | 72.8 | 2000 | 1000 | 20 | 4 | 1 | 1 | 1036 | 1033 |


| Row | $\begin{gathered} \mathrm{W} \\ (\mathrm{~mm}) \end{gathered}$ | $\begin{aligned} & \hline \mathrm{h}=\mathrm{H} \\ & (\mathrm{~mm}) \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{R}_{8030} \\ & (\mathrm{~mm}) \end{aligned}$ | $\begin{gathered} \mathrm{W} \\ (\mathrm{~mm}) \end{gathered}$ | $\begin{gathered} \mathrm{D} \\ (\mathrm{~mm}) \end{gathered}$ | FLD | St t $(\mathrm{mm})$ | St spac | N | $\begin{gathered} \mathrm{T}_{\mathrm{b}} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$ | $\begin{gathered} \mathrm{T}_{\mathrm{c}} \\ \left({ }^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 82 | 750 | 1500 | 48 | 3000 | 1500 | 20 | 2 | 0.3333 | 1 | 614 | 643 |
| 83 | 750 | 1500 | 48 | 3000 | 1500 | 30 | 2 | 0.3333 | 1 | 547 | 691 |
| 84 | 750 | 1500 | 53 | 3000 | 1500 | 40 | 2 | 0.3333 | 1 | 529 | 775 |
| 85 | 750 | 1500 | 115 | 3000 | 1500 | 40 | 4 | 1 | 1 | 988 | 1145 |
| 86 | 750 | 1500 | 121 | 3000 | 1500 | 20 | 2 | 1 | 1 | 966 | 1052 |
| 87 | 750 | 1500 | 122 | 3000 | 1500 | 40 | 2 | 1 | 1 | 1054 | 1175 |
| 88 | 750 | 1500 | 126 | 3000 | 1500 | 20 | 4 | 1 | 1 | 1002 | 1027 |
| 89 | 750 | 1500 | 136 | 3000 | 1500 | 30 | 4 | 1 | 1 | 1044 | 1145 |
| 90 | 750 | 1500 | 138 | 3000 | 1500 | 30 | 2 | 1 | 1 | 976 | 1144 |
| 91 | 750 | 1500 | 144 | 3000 | 1500 | 30 | 1 | 3 | 1 | 929 | 1101 |
| 92 | 750 | 1500 | 147 | 3000 | 1500 | 30 | 2 | 3 | 1 | 876 | 1035 |
| 93 | 750 | 1500 | 151 | 3000 | 1500 | 40 | 1 | 3 | 1 | 662 | 906 |
| 94 | 750 | 1500 | 152 | 3000 | 1500 | 20 | 1 | 3 | 1 | 862 | 1077 |
| 95 | 750 | 1500 | 155 | 3000 | 1500 | 40 | 2 | 3 | 1 | 773 | 853 |
| 96 | 750 | 1500 | 168 | 3000 | 1500 | 20 | 2 | 3 | 1 | 1036 | 1095 |
| 97 | 1000 | 500 | 11.2 | 1000 | 500 | 20 | 4 | 1 | 1 | 888 | 787 |
| 98 | 1000 | 500 | 11.3 | 1000 | 500 | 20 | 2 | 0.3333 | 1 | 627 | 556 |
| 99 | 1000 | 500 | 13.3 | 1000 | 500 | 20 | 2 | 1 | 2 | 790 | 868 |
| 100 | 1000 | 500 | 14.2 | 1000 | 1000 | 20 | 2 | 0.3333 | 1 | 807 | 859 |
| 101 | 1000 | 500 | 16 | 1000 | 1000 | 20 | 2 | 1 | 2 | 606 | 862 |
| 102 | 1000 | 500 | 21.8 | 1000 | 1000 | 20 | 1 | 3 | 1 | 187 | 702 |
| 103 | 1000 | 500 | 22 | 1000 | 1000 | 20 | 2 | 3 | 1 | 341 | 687 |
| 104 | 1000 | 500 | 22.2 | 1000 | 1000 | 20 | 4 | 1 | 1 | 810 | 845 |
| 105 | 1000 | 500 | 23.7 | 1000 | 500 | 20 | 1 | 3 | 1 | 306 | 710 |
| 106 | 1000 | 500 | 26.5 | 1000 | 500 | 20 | 2 | 3 | 1 | 780 | 790 |
| 107 | 1000 | 500 | 32.8 | 2000 | 2000 | 30 | 2 | 1 | 1 | 480 | 560 |
| 108 | 1000 | 500 | 36.8 | 2000 | 2000 | 20 | 2 | 1 | 1 | 573 | 622 |
| 109 | 1000 | 1000 | 5.7 | 1000 | 2000 | 30 | 2 | 0.3333 | 1 | 234 | 190 |
| 110 | 1000 | 1000 | 9 | 1000 | 2000 | 40 | 2 | 0.3333 | 1 | 452 | 313 |
| 111 | 1000 | 1000 | 21.3 | 1000 | 2000 | 20 | 4 | 1 | 1 | 666 | 570 |
| 112 | 1000 | 1000 | 35.5 | 1000 | 2000 | 20 | 2 | 1 | 10 | 887 | 872 |
| 113 | 1000 | 1000 | 36.8 | 1000 | 2000 | 40 | 2 | 1 | 10 | 790 | 969 |
| 114 | 1000 | 1000 | 37.3 | 1000 | 2000 | 30 | 4 | 1 | 1 | 847 | 974 |
| 115 | 1000 | 1000 | 38.2 | 1000 | 2000 | 30 | 2 | 1 | 2 | 996 | 1035 |
| 116 | 1000 | 1000 | 39.7 | 1000 | 2000 | 40 | 4 | 1 | 1 | 558 | 938 |
| 117 | 1000 | 1000 | 41.3 | 2000 | 1000 | 20 | 2 | 1 | 1 | 750 | 870 |
| 118 | 1000 | 1000 | 45.3 | 1000 | 2000 | 20 | 2 | 3 | 1 | 744 | 899 |
| 119 | 1000 | 1000 | 49 | 1000 | 2000 | 30 | 2 | 3 | 1 | 567 | 825 |
| 120 | 1000 | 1000 | 51.5 | 1000 | 2000 | 40 | 2 | 3 | 1 | 648 | 823 |
| 121 | 1000 | 1000 | 51.8 | 2000 | 1000 | 30 | 2 | 1 | 1 | 932 | 1003 |
| 122 | 1000 | 1000 | 53.3 | 1000 | 2000 | 20 | 1 | 3 | 1 | 715 | 947 |
| 123 | 1000 | 1000 | 54.7 | 1000 | 2000 | 40 | 1 | 3 | 1 | 304 | 874 |


| Row | $\begin{gathered} \mathrm{w} \\ (\mathrm{~mm}) \end{gathered}$ | $\begin{aligned} & \hline \mathrm{h}=\mathrm{H} \\ & (\mathrm{~mm}) \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline \mathrm{R}_{8030} \\ & (\mathrm{~mm}) \\ & \hline \end{aligned}$ | $\begin{gathered} \mathrm{W} \\ (\mathrm{~mm}) \end{gathered}$ | $\begin{gathered} \mathrm{D} \\ (\mathrm{~mm}) \end{gathered}$ | FLD | $\begin{gathered} \mathrm{St} \mathrm{t} \\ (\mathrm{~mm}) \end{gathered}$ | St spac | N | $\begin{gathered} \mathrm{T}_{\mathrm{b}} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$ | $\begin{gathered} \mathrm{T}_{\mathrm{c}} \\ \left({ }^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 124 | 1000 | 1000 | 56 | 2000 | 1000 | 40 | 2 | 1 | 2 | 636 | 1045 |
| 125 | 1000 | 1000 | 57 | 1000 | 2000 | 30 | 1 | 3 | 1 | 561 | 856 |
| 126 | 1000 | 1000 | 65.5 | 2000 | 2000 | 40 | 2 | 1 | 1 | 554 | 950 |
| 127 | 1000 | 1000 | 68.7 | 2000 | 2000 | 20 | 2 | 1 | 1 | 1015 | 1022 |
| 128 | 1000 | 1000 | 69.7 | 2000 | 2000 | 30 | 2 | 1 | 1 | 956 | 1000 |
| 129 | 1000 | 1000 | 88.7 | 2000 | 1000 | 40 | 1 | 3 | 1 | 681 | 704 |
| 130 | 1000 | 1000 | 93.8 | 2000 | 1000 | 40 | 2 | 3 | 2 | 725 | 747 |
| 131 | 1500 | 1000 | 118.7 | 2000 | 1000 | 40 | 2 | 3 | 1 | 587 | 783 |
| 132 | 1500 | 1500 | 240 | 6000 | 6000 | 30 | 2 | 1 | 1 | 698 | 872 |
| 133 | 1500 | 1500 | 240 | 6000 | 6000 | 40 | 2 | 1 | 1 | 641 | 919 |
| 134 | 1500 | 1500 | 283 | 6000 | 6000 | 20 | 2 | 1 | 1 | 546 | 825 |
| 135 | 2000 | 500 | 47.3 | 2000 | 2000 | 30 | 2 | 1 | 1 | 357 | 643 |
| 136 | 2000 | 500 | 48 | 2000 | 2000 | 20 | 2 | 1 | 2 | 564 | 625 |
| 137 | 2000 | 1000 | 28.2 | 2000 | 1000 | 20 | 4 | 1 | 1 | 375 | 555 |
| 138 | 2000 | 1000 | 34.8 | 2000 | 1000 | 20 | 2 | 1 | 12 | 653 | 567 |
| 139 | 2000 | 1000 | 38.2 | 2000 | 1000 | 20 | 2 | 0.3333 | 1 | 560 | 451 |
| 140 | 2000 | 1000 | 39.5 | 2000 | 2000 | 30 | 2 | 0.3333 | 1 | 706 | 701 |
| 141 | 2000 | 1000 | 39.7 | 2000 | 2000 | 20 | 2 | 0.3333 | 1 | 766 | 702 |
| 142 | 2000 | 1000 | 41.8 | 2000 | 2000 | 40 | 2 | 0.3333 | 1 | 685 | 723 |
| 143 | 2000 | 1000 | 47.2 | 2000 | 1000 | 30 | 4 | 1 | 1 | 890 | 746 |
| 144 | 2000 | 1000 | 48 | 2000 | 1000 | 30 | 2 | 0.3333 | 1 | 741 | 626 |
| 145 | 2000 | 1000 | 51.8 | 2000 | 1000 | 40 | 2 | 1 | 12 | 739 | 885 |
| 146 | 2000 | 1000 | 54 | 2000 | 1000 | 30 | 2 | 1 | 3 | 790 | 784 |
| 147 | 2000 | 1000 | 61.5 | 2000 | 1000 | 40 | 4 | 1 | 1 | 786 | 939 |
| 148 | 2000 | 1000 | 61.7 | 2000 | 1000 | 40 | 2 | 0.3333 | 1 | 762 | 824 |
| 149 | 2000 | 1000 | 72.2 | 2000 | 1000 | 20 | 2 | 3 | 1 | 740 | 882 |
| 150 | 2000 | 1000 | 74.2 | 2000 | 2000 | 40 | 2 | 1 | 9 | 760 | 993 |
| 151 | 2000 | 1000 | 74.3 | 2000 | 2000 | 20 | 4 | 1 | 1 | 902 | 891 |
| 152 | 2000 | 1000 | 76.8 | 2000 | 2000 | 30 | 2 | 1 | 3 | 948 | 942 |
| 153 | 2000 | 1000 | 77.5 | 2000 | 2000 | 20 | 2 | 1 | 9 | 940 | 970 |
| 154 | 2000 | 1000 | 81 | 2000 | 1000 | 20 | 1 | 3 | 1 | 595 | 965 |
| 155 | 2000 | 1000 | 83.7 | 2000 | 2000 | 40 | 4 | 1 | 1 | 937 | 998 |
| 156 | 2000 | 1000 | 88.8 | 2000 | 2000 | 30 | 4 | 1 | 1 | 894 | 888 |
| 157 | 2000 | 1000 | 95 | 2000 | 1000 | 30 | 1 | 3 | 1 | 475 | 790 |
| 158 | 2000 | 1000 | 96.7 | 2000 | 2000 | 20 | 1 | 3 | 1 | 818 | 763 |
| 159 | 2000 | 1000 | 104 | 2000 | 2000 | 30 | 1 | 3 | 1 | 268 | 718 |
| 160 | 2000 | 1000 | 107.3 | 2000 | 2000 | 20 | 2 | 3 | 1 | 581 | 694 |
| 161 | 2000 | 1000 | 111.5 | 2000 | 2000 | 40 | 1 | 3 | 1 | - | . |
| 162 | 2000 | 1000 | 114.3 | 2000 | 2000 | 30 | 2 | 3 | 1 | 391 | 679 |
| 163 | 2000 | 1000 | 123.5 | 2000 | 1000 | 40 | 2 | 3 | 1 | 563 | 802 |
| 164 | 2000 | 1000 | 129.8 | 2000 | 1000 | 40 | 1 | 3 | 1 | 832 | 820 |
| 165 | 2000 | 1000 | 139 | 2000 | 2000 | 40 | 2 | 3 | 1 | 252 | 660 |


| Row | W <br> $(\mathrm{mm})$ | $\mathrm{h}=\mathrm{H}$ <br> $(\mathrm{mm})$ | $\mathrm{R}_{8030}$ <br> $(\mathrm{~mm})$ | W <br> $(\mathrm{mm})$ | D <br> $(\mathrm{mm})$ | FLD | St t <br> $(\mathrm{mm})$ | St spac | N | $\mathrm{T}_{\mathrm{b}}$ <br> $\left({ }^{\circ} \mathrm{C}\right)$ | $\mathrm{T}_{\mathrm{c}}$ <br> $\left({ }^{\circ} \mathrm{C}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 166 | 3000 | 1500 | 32 | 3000 | 1500 | 30 | 2 | 0.3333 | 1 | 336 | 251 |
| 167 | 3000 | 1500 | 42 | 3000 | 1500 | 20 | 2 | 0.3333 | 1 | 337 | 282 |
| 168 | 3000 | 1500 | 46 | 3000 | 1500 | 40 | 2 | 0.3333 | 1 | 429 | 315 |
| 169 | 3000 | 1500 | 68 | 3000 | 1500 | 20 | 4 | 1 | 1 | 483 | 381 |
| 170 | 3000 | 1500 | 75 | 3000 | 1500 | 20 | 2 | 1 | 1 | 462 | 476 |
| 171 | 3000 | 1500 | 100 | 3000 | 1500 | 30 | 4 | 1 | 1 | 650 | 523 |
| 172 | 3000 | 1500 | 106 | 3000 | 1500 | 30 | 2 | 1 | 1 | 705 | 666 |
| 173 | 3000 | 1500 | 123 | 3000 | 1500 | 40 | 2 | 1 | 1 | 796 | 782 |
| 174 | 3000 | 1500 | 125 | 3000 | 1500 | 40 | 4 | 1 | 1 | 790 | 693 |
| 175 | 3000 | 1500 | 150 | 3000 | 1500 | 20 | 1 | 3 | 1 | 758 | 853 |
| 176 | 3000 | 1500 | 174 | 3000 | 1500 | 30 | 1 | 3 | 1 | 786 | 963 |
| 177 | 3000 | 1500 | 199 | 3000 | 1500 | 40 | 1 | 3 | 1 | 649 | 954 |
| 178 | 3000 | 1500 | 200 | 3000 | 1500 | 20 | 2 | 3 | 1 | 873 | 905 |
| 179 | 3000 | 1500 | 223 | 3000 | 1500 | 30 | 2 | 3 | 1 | 824 | 958 |
| 180 | 3000 | 1500 | 250 | 3000 | 1500 | 40 | 2 | 3 | 1 | 756 | 946 |
| 181 | 3000 | 1500 | 296 | 6000 | 6000 | 40 | 2 | 1 | 1 | 748 | 987 |
| 182 | 3000 | 1500 | 395 | 6000 | 6000 | 20 | 2 | 1 | 1 | 710 | 960 |
| 183 | 3000 | 1500 | 425 | 6000 | 6000 | 10 | 2 | 1 | 2 | 626 | 871 |
| 184 | 4500 | 1500 | 370 | 6000 | 6000 | 10 | 2 | 1 | 2 | 768 | 961 |
| 185 | 6000 | 1500 | 355 | 6000 | 6000 | 40 | 2 | 1 | 1 | 940 | 1047 |
| 186 | 6000 | 1500 | 421 | 6000 | 6000 | 30 | 2 | 1 | 1 | 858 | 988 |
| 187 | 6000 | 1500 | 479 | 6000 | 6000 | 20 | 2 | 1 | 1 | 816 | 918 |

Note: Sill height is zero for all tests.

## APPENDIX I

## COMPARISON OF FIRE SEVERITY BETWEEN IDEALISED FIRE CURVES AND STANDARD FIRE TEST

## Comparison of Fire Severity Between Idealised Fire C urves and Standard Fire T est

## Introduction

The determination of appropriate fire resistance levels for fires in enclosures requires:

1. knowledge of the severity of the fires that are likely to occur, and
2. knowledge of the relationship between the severity of fires in enclosures and the fire resistance level (FRL) determined by the standard fire resistance test to AS1530.4

The severity of fires may be thought of in a variety of ways but probably the most common used when considering FRLs is the temperature - time relationship, perhaps because the most carefully specified aspect of the standard fire test is the required variation of the temperature in the furnace with time.

An alternative way of thinking of fire severity (fire "size") is through the heat release rate. In many cases (when using fire models for example) the fire is specified by the heat release rate - time relationship.

In real fires in enclosures the temperature - time and heat release rate - time relationships vary widely. Factors that are usually assumed to affect these relationships are the type, form and quantity of fuels; the materials used in the walls, roof and floor of the enclosure; the ventilation of the enclosure and the manner of ignition, but many other factors can also lead to significant variations in these relationships.


Figure 1 Reduction of Fuel M ass with Time for Trays of Methylated Spirits in the Open and in Enclosures with O pening Height as Shown

Figures 1 and 2 illustrate some of these factors. Figure 1 shows fuel mass - time curves for trays of methylated spirits burned in the open and in an enclosure with various sizes of opening. The burning in the open is at a very steady rate virtually from the time of ignition until almost all the fuel is consumed. In the enclosure again the burning rate is fairly constant but slight non-linearity does occur in some cases. The amount of ventilation also has a very great effect. Figure 2 is similar, but is for wooden cribs. In the open the burning rate is highly dependent on whether a small quantity of accelerant (methylated spirits) is poured over the crib before ignition. The burning rate is very much greater if it is than otherwise. Even when the accelerant is used, but also when it is not used, the burning rate increases much more slowly than in the liquid fuel case. It eventually reaches a fairly steady maximum and then decreases again as the fuel is exhausted. There are similar effects on the burning rate in the enclosure, and as for the liquid fuel, the ventilation has a significant effect.


Figure 2 Reduction of F uel M ass with Time for W ooden Cribs in the $O$ pen and in Enclosures with Opening Height as Shown

In real fires in buildings the rate of development of the fire can vary greatly, with the development being very rapid or very slow, sometimes with virtually no increase in burning rate occurring for a long period, followed by a sudden very rapid increase in the burning rate. This is reflected in great variations in the resulting increase in temperature with time. Once burning at a high rate is established the period over which this is sustained also varies greatly, though generally more systematically. The duration of rapid burning may be affected by many factors but two obvious factors are the quantity of fuel in the enclosure and the ventilation available to the fire. Once most or all of the fuel is consumed the burning rate decreases, but again the time over which the burning rate of the fire decreases can vary greatly, depending on such things as the type and form of the fuel and many other factors.

## Discussion

In this report the fire severity is generally specified by the temperature - time relationship, although the fuel mass - time relationship will also be used in some cases. When applied to discussion or estimation of fire resistance levels the fire severity will generally be discussed in simplified form in terms of the maximum temperature and the duration of high temperatures. The duration used is the
estimated time for which temperatures in the enclosure are estimated to be greater than $500^{\circ} \mathrm{C}$. The forms of some of the idealised temperature - time relationships that may be considered are shown in Figure 5. In this figure the duration in each case is arbitrarily shown as 180 minutes ( 3 hours), but this can of course vary very widely; similarly the maximum temperature is also arbitrarily chosen as $1100^{\circ} \mathrm{C}$, and again this can vary greatly. The shapes shown are a constant temperature of $1100^{\circ} \mathrm{C}$, an initial temperature of $1100^{\circ} \mathrm{C}$ falling linearly to $500^{\circ} \mathrm{C}$, an initial temperature of $500^{\circ} \mathrm{C}$ rising linearly to $1100^{\circ} \mathrm{C}$, and finally an initial temperature of $500^{\circ} \mathrm{C}$ rising linearly to $1100^{\circ} \mathrm{C}$ at 90 minutes and then falling linearly to $500^{\circ} \mathrm{C}$ at 180 minutes. Clearly the first mentioned is the most conservative. In this case the temperature at the surface of any exposed structural member would rise from ambient to close to $1100^{\circ} \mathrm{C}$ at a rate depending on the structural material, the type and thickness of any insulation material applied to the structural element and the size and shape of the structural element.


Figure 5 Idealised Temperature - Time Relationships
Two cases to illustrate this are shown in Figure 6 for the constant enclosure temperature idealisation: the case of a smaller less protected element (StrucElem 2) which rises quickly and by 90 minutes is at temperatures close to $1100^{\circ} \mathrm{C}$; and the case of a larger or more protected element (StrucElem 1) which after 180 minutes is at about $900^{\circ} \mathrm{C}$, substantially below the gas temperature of $1100^{\circ} \mathrm{C}$.

If the assumed enclosure temperature is $1100^{\circ} \mathrm{C}$ and falls linearly to $500^{\circ} \mathrm{C}$ the temperatures reached by similar structural elements are as shown in Figure 7. In this case the temperatures of StrucElem 1 reaches a maximum of about $950^{\circ} \mathrm{C}$ at about 50 minutes and the temperature of StrucElem 2 peaks at about $600^{\circ} \mathrm{C}$ at about 120 minutes. In this case the temperatures never reach those reached in the previous case, although initially the rate of temperature rise is similar. However, it gradually reduces and eventually the temperatures begin to fall once the gas temperature falls below the element temperature.

In the case where the enclosure temperature is assumed to start at $500^{\circ} \mathrm{C}$ and rise to $1100^{\circ} \mathrm{C}$ at 180 minutes the temperatures reached by the structural elements are as shown in Figure 8. In this case
they both continue to rise, StrucElem 1 reaching about $1000^{\circ} \mathrm{C}$ at 180 minutes and StrucElem 2 about $700^{\circ} \mathrm{C}$ at this time.

The case where the temperature starts at $500^{\circ} \mathrm{C}$ and rises to $1100^{\circ} \mathrm{C}$ at 90 minutes then falls to $500^{\circ} \mathrm{C}$ at 180 minutes is shown in Figure 9. In this case the temperature of StrucElem 1 peaks at about $1000^{\circ} \mathrm{C}$ at about 100 minutes and StrucElem 2 at about $650^{\circ} \mathrm{C}$ at about 140 minutes.

For comparison, the temperature rise of the same elements when subjected to the temperature - time regime of the standard fire test is shown in Figure 10. In this case both elements peak at 180 minutes, StrucElem 1 at about $1000^{\circ} \mathrm{C}$ and StrucElem 2 at about $800^{\circ} \mathrm{C}$.


Figure 6 Constant Temperature E nclosure and Resulting E lement Temperature - Time Relationships


Figure 7 Temperature Enclosure and Resulting E lement Temperature - Time Relationships

Thus, as expected the constant temperature regime of Figure 6 is the most severe with the highest temperatures being reached quickest in both elements. The constant rise regime of Figure 8 and the standard fire test regime of Figure 10 are the next most severe in terms of the maximum temperature reached, but in both cases this occurs at 180 minutes.

The constant temperature fall regime of Figure 7 generally produces quite high maximum element temperatures quickly, but the maximum temperature reached for slowly responding elements is generally lower than for the other regimes.


Figure 8 Temperature Enclosure and Resulting E lement T emperature - Time R elationships


Figure 9 Temperature Enclosure and Resulting E lement Temperature - Time Relationships


Figure 10 Standard Temperature-Time Response in Enclosure and $R$ esulting E lement Temperature - Time R elationships


Figure 11 Standard Temperature-Time Response in E nclosure and Resulting Element Temperature - Time Relationships for L ow Insulation Element and E lement with Protection M aterial with Significant W ater C ontent


Figure 12 C onstant $1000^{\circ} \mathrm{C}$ Temperature-Time R esponse in E nclosure and Resulting E lement Temperature - Time Relationships


Figure 13 C onstant $900^{\circ} \mathrm{C}$ Temperature-Time R esponse in E nclosure and Resulting Element Temperature - Time Relationships


Figure 14 C omparison of Resulting E lement Temperatures for C onstant 900, 1000 and $1100^{\circ} \mathrm{C}$ and Standard Temperature-Time Regimes in Enclosure for StrucE Iem 1


Figure 15 C omparison of Resulting E lement Temperatures for C onstant 900,1000 and $1100^{\circ} \mathrm{C}$ and Standard Temperature-Time Regimes in E nclosure for StrucE lem 2

## APPENDIX J

## CALCULATION OF FIRE RESISTANCE LEVELS FOR ENCLOSURES

## CALCULATION OF FIRE RESISTANCE LEVELS FOR ENCLOSURES

## by

## I R Thomas, P Beever and J Blackmore

## Introduction

A rational method for the calculation of fire resistance levels (FRLs) for enclosures has been developed. The method recognises that there are three bases which may be appropriate for the determination of durations that the barriers and/or structure of enclosures and buildings may be required to function satisfactorily in the event of a fire. These are:

- occupant avoidance
- fire brigade intervention
- burnout

Determination of which of these are appropriate is the first step in determining the appropriate FRL for and enclosure or building.

The second step is determination of the severity of the fire. In this context fire severity can be thought of as the time-temperature history of the fire. This can be represented in a simplified manner by two parameters, the maximum temperature that occurs during the fire and the length of time for which high temperatures exist in the enclosure.

A methodology has been developed for estimating these parameters which is based on three factors

- the size of the enclosure
- the fire load density in the enclosure
- the ventilation of the enclosure
(Alternatively, it can be said that the estimate is based on only two quantities, the quantity of fuel in the enclosure and the ventilation of the enclosure, but this approach ignores the way in which this problem is normally approached by using the actual dimensions of the enclosure and estimating from surveys and other available data the fire load density.)

It has been found that the thermal properties of the boundaries have no significant influence on the temperatures or the duration of high temperatures, and thus these properties are not considered in making the estimate.

It is assumed that the enclosure has a single ventilation opening. Multiple openings can either be treated as an equivalent single opening or the largest opening treated as though it were the only opening (this should generally be conservative). It is known that in many multiple opening configurations the duration of high temperatures will be much shorter than with a single opening of the same size, but that this is very dependent on the arrangement of the openings.

The duration of burning (or the approximate inverses, the burning rate or mass loss rate) has been found to be significantly influenced by the width of the opening compared with the width of the enclosure. It has been found that the longest duration occurs for an opening that is across the full width of the enclosure, with little or no change in the maximum temperatures reached. Thus in the following the openings considered extend across the full width of the enclosure, and thus for a given FCRC Project 3 Fire Resistance and Non-Combustibility - Part 2
ventilation condition (ratio of ventilation factor to total surface area, see ???) the opening is the widest but shallowest possible.

Maximum enclosure sizes have previously been determined for each occupancy in the BCA and are shown in Table 1. Also shown in Table 1 are the range of ventilation and fire load density considered appropriate. The basis for determination of these has been documented elsewhere.

The following calculation of FRLs is based on the mean fire load density for each enclosure size and ventilation condition.

The FRL is determined from the fire severity on the basis of the fire resistance level that is required for all representative elements to survive the fire, either for the required period (in cases where occupant avoidance or fire brigade control are the governing criterion) or burnout.

The estimated survival times for the representative elements for FRL's of 30, 45, 60, 90, 120 and 180 minutes are given in Table 2 for several maximum temperatures. For each maximum temperature the estimated survival times are tabulated for durations of high temperatures from ten minutes ( 600 s ) to three hours ( 10800 s ). In Table 2 it is assumed that the maximum temperature of $1100{ }^{\circ} \mathrm{C}$ occurs at the start of the period considered and that the temperature reduces linearly to $500^{\circ} \mathrm{C}$ over the nominated duration of high temperatures.

It should be noted that, although often assumed otherwise, it has been observed for many of the enclosures for which test data is available that uniform temperature conditions do not occur throughout the enclosure - the duration of high temperatures near the vent generally lasts throughout the fire, but at locations remote from the fire the duration of high temperatures is often shorter. This has implications for FRL requirements (for example, possible reductions away from the opening) but these have not been taken into account in the following recommendations.

In the modelling of barriers and structural elements on which the relationship between the design fire and the standard fire resistance test is based, the model for masonry is for a single leaf wall only and is based on very limited standard test data only. It is not possible to predict the behaviour of realistic walls with an FRL of 90,120 or 180 . Also, with the sudden heating implied by the form of the temperature-time relationship used in this report such walls are predicted to fail very early in the fire, but in reality the temperature rise will be slower. Consequently, the results of the model for masonry walls have been ignored in the following recommendations.

In addition, it should be noted that the structural and barrier details used in the following are not necessarily realistic systems, in that thicknesses of protective coatings, insulation or wall boards are not necessarily commercially available or generally used in practice. The systems are otherwise similar to those used in practice. This has been necessary to achieve the desired FRLs. Even the minimum systems used in practice would generally achieve higher FRLs than 30, 45 and sometimes 60 minutes. However this procedure is necessary to ensure that systems developed in the future specifically for low FRLs are covered as best is possible with current information.

## Evacuation Times

The derivation of the evacuation times has been reported elsewhere. The times for each building class are given below.

|  | Evacuation Time (minutes) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Class | 1 Storey | 2 to 5 Storeys | $>5$ Storey $\quad \mathbf{s}$ $(\mathrm{n}$ storeys) | $\begin{gathered} 10 \\ \text { Storeys } \end{gathered}$ | $\begin{gathered} 20 \\ \text { Storeys } \end{gathered}$ | $\begin{gathered} \hline 30 \\ \text { Storeys } \end{gathered}$ | $\begin{gathered} 50 \\ \text { Storeys } \end{gathered}$ |
| 2 | 16 | 21 | $1.3 n+13$ | 26 | 39 | 52 | 78 |
| 3a | extended | extended | extended | - | - | - | - |
| 3b | 16 | 21 | $1.3 n+13$ | 26 | 39 | 52 | 78 |
| 4 | 16 | 21 | $1.3 n+13$ | 26 | 39 | 52 | 78 |
| 5 | 16 | 21 | $1.5 n+13$ | 28 | 43 |  |  |
| 6 | 16 | 21 | - | - | - | - | - |
| 7 carpark | - | - | - | - | - | - | - |
| 7 other | - | - | - | - | - | - | - |
| 8 purpose built | - | - | - | - | - | - | - |
| 8 general purpose | - | - | - | - | - | - | - |
| 9a | extended | extended | extended | - | - | - | - |
| 9b school | 16 | 21 | - | - | - | - | - |
| 9b disco or nightclub | 16 | 21 | - | - | - | - | - |
| 9b exhibitio n hall | 16 | 21 | - | - | - | - | - |
| 9b theatre or public hall with stage | 16 | 21 | - | - | - | - | - |
| 9b theatre or public hall without stage | 16 | 21 | - | - | - | - | - |
| 9b other | 16 | 21 | - | - | - | - | - |

## Fire Brigade Access Time

The figure agreed for this is $\mathbf{8 4}$ minutes which is the $95 \% \mathrm{ile}$ of the available Australian data. This figure is considered to be conservative (that is, excessively long) but no better basis for determining a figure has been found.

## Determination of FRL

## In cases where occupant evacuation time governs:

The FRLs below would be required unless a lesser FRL is required for the burnout time criterion below.

For cases where the occupant evacuation time is 16 minutes (and assuming the maximum temperature is $1100{ }^{\circ} \mathrm{C}$ ) an FRL of 60 minutes would result in an estimated failure time of greater than 16 minutes for almost all fire durations.

For cases where the occupant evacuation time is over 20 minutes (and again assuming the maximum temperature is $1100{ }^{\circ} \mathrm{C}$ ) an FRL of 60 minutes could produce failures in less than the required time but an FRL of 90 minutes would produce no failures in over 60 minutes.

On the same basis, for the case where the occupant evacuation time is 78 minutes an FRL of 120 minutes would produce no failure in less than 80 minutes.

## In cases where fire brigade control time governs:

In cases where fire brigade control time governs an FRL of 120 minutes would produce no failures in 84 minutes (again assuming the maximum temperature is $1100^{\circ} \mathrm{C}$ ).

## In cases where burnout time governs:

## Classes 2 and 4

The maximum enclosure size for classes 2 and 4 is 10 m by 20 m by 2.4 m high. The minimum ventilation for this case is by a single opening 10 m wide by 1.87 m high in the end wall. It is estimated (Table A2) that with a fire load density of $58.8 \mathrm{~kg} / \mathrm{m}^{2}$ (wood equivalent) the fire duration is 321 minutes. From Table 2 for a maximum temperature of $1100^{\circ} \mathrm{C}$ no element with an FRL of 180 minutes would be satisfactory. By extrapolation an FRL of over 300 minutes would be required, but no requirement is stated because of the degree of extrapolation required.

Alternative vents are 20 m by 1.37 m high and 2.10 m high, and for these cases the fire durations are estimated as 104 and 50 minutes respectively. With a maximum temperature of $1100^{\circ} \mathrm{C}$ an FRL of 120 minutes would be satisfactory for the smaller ventilation case. Some elements with an FRL of 60 minutes would be expected to have failed at 50 minutes (with a maximum temperature of $1100^{\circ} \mathrm{C}$ ), but no elements with an FRL of 90 minutes would be expected to have failed by this time. Thus an FRL of 90 minutes would suffice for the larger ventilation case.

## Classes 3a and 3b

The maximum enclosure size for class 3 a and the smaller enclosure size for class 3 b is 4 m by 8 m by 2.4 m high. The maximum larger enclosure size for class 3 b is 30 m by 50 m by 5 m high. Considering only the smaller of these, the minimum ventilation for Class 3 a is by a single opening 4 m wide by 1.14 m high in the end wall and for Class 3 b by a similar opening 0.72 m high. It is estimated (Table A2) that with a fire load density of $29.4 \mathrm{~kg} / \mathrm{m}^{2}$ (wood equivalent) the fire duration is 156 minutes for the class 3 a case and 343 minutes for the class 3 b case. With a maximum temperature of $1100^{\circ} \mathrm{C}$ for both classes it is obvious (from the classes 2 and 4 case) that a FRL of 180 minutes would be required for the first and (by extrapolation) over 300 minutes for the second.

Alternative vents sizes are 8 m by 1.58 m high and 2.4 m high for class 3 a and 0.94 and 1.49 m high for class 3 b , and for these cases the fire durations are estimated as $39,19,94$ and 43 minutes respectively. With a maximum temperature of $1100{ }^{\circ} \mathrm{C}$ and an FRL of 60 minutes no elements would be expected to fail by 43 minutes, so this would be satisfactory for the 19,39 and 43 minute cases. An FRL of 120 minutes would be required for no failures to be predicted by 94 minutes.

The FRLs required for the larger enclosures considered appropriate for Class 3 b are not able to be estimated because the severity of the fires in these enclosures are not able to be estimated.

## Class 5

The enclosure sizes for classes 5 is 4 m by 8 m by 3 m high and 60 m by 60 m by 3 m high. Considering initially the smaller of these, the minimum ventilation for Class 5 is by a single opening 4 m wide by 0.77 m high in the end wall. It is estimated (Table A2) that with a fire load density of $47.1 \mathrm{~kg} / \mathrm{m}^{2}$ (wood equivalent) the fire duration is 484 minutes and the temperature $1100{ }^{\circ} \mathrm{C}$. An FRL of about 480 minutes is estimated for this case, but no requirement is stated because of the degree of extrapolation required.

Alternative vents sizes are 8 m by 1.23 m high and 2.34 m high with fire durations estimated as 96 and 32 minutes respectively. With an assumed maximum temperature of $1100^{\circ} \mathrm{C}$ FRLs of 120 and 60 minutes would suffice.

The FRLs required for the larger enclosures considered appropriate for Class 5 are not able to be estimated because the severity of the fires in these enclosures are not able to be estimated.

## Class 6

The enclosure sizes for class 6 are 5 m by 20 m by 3 m high and 50 m by 100 m by 5 m high.
The minimum ventilation of the smaller enclosure is by a single opening 5 m wide by 1.64 m high in the end wall. It is estimated that with a fire load density of $58.8 \mathrm{~kg} / \mathrm{m}^{2}$ the fire duration is 402 minutes. It is estimated an FRL of about 420 minutes would be required, but no requirement is stated because of the degree of extrapolation required.

Alternative vents are 20 m by 1.35 m high and 2.31 m high, and for these cases the fire durations are estimated as 106 and 43 minutes respectively. With an assumed maximum temperature of $1100^{\circ} \mathrm{C}$ FRLs of 120 and 60 minutes suffice.

The FRLs required for the larger enclosures considered appropriate for Class 5 are not able to be estimated because the severity of the fires in these enclosures are not able to be estimated.

## Classes 7a and 7b

The enclosure sizes for classes 7 a and 7 b are 5 m by 20 m by 2.4 m high and 50 m by 100 m by 2.4 m high.

Considering only the smaller of these, the minimum ventilation for Class 7 a is by a single opening 5 m wide by 1.18 m high in the end wall. It is estimated (Table A2) that with a fire load density of $11.8 \mathrm{~kg} / \mathrm{m}^{2}$ (wood equivalent) the fire duration is 141 minutes. With an assumed maximum temperature of $1100^{\circ} \mathrm{C}$ an FRL of 180 minutes would be required.

Alternative vents sizes for the class 7 a case are 20 m by 1.37 and 2.4 m high with estimated fire durations of 21 and 8 minutes respectively. With an assumed maximum temperature of $1100{ }^{\circ} \mathrm{C}$ FRLs of 60 and 30 minutes respectively would be required.

For class 7 b , again considering only the smaller enclosures, the minimum ventilation is by a single opening 5 m wide by 1.79 m high in the end wall. It is estimated (Table A2) that with a fire load density of $324 \mathrm{~kg} / \mathrm{m}^{2}$ (wood equivalent) the fire duration would be 1902 minutes. No FRL can be estimated for such an extended duration fire. Alternative vents sizes for the class 7 b case are 20 m by 1.37 and 2.4 m high with estimated fire durations of 499 and 202 minutes respectively. No FRL estimate can be made for the first of these because of the extended duration, while, with an assumed maximum temperature of $1100^{\circ} \mathrm{C}$ an FRL of 240 minutes respectively would be required for the second.

The FRLs required for the larger enclosures are not able to be estimated because the severity of the fires in these enclosures are not able to be estimated.

## Class 8

The enclosure sizes for class 8 are 5 m by 20 m by 4 m high and 50 m by 100 m by 6 m high.
The minimum ventilation of the smaller enclosure is by a single opening 5 m wide by 1.79 m high in the end wall. It is estimated that with a fire load density of $35.3 \mathrm{~kg} / \mathrm{m}^{2}$ the fire duration is 208 minutes. Thus an FRL of 240 minutes would be required.

Alternative vents are 20 m by 1.48 and 2.52 m high, and for these cases the fire durations are estimated as 54 and 22 minutes respectively. With an assumed maximum temperature of $1100{ }^{\circ} \mathrm{C}$ elements with an FRL of 90 and 60 minutes respectively would be expected to suffice.

The FRLs required for the larger enclosures considered appropriate for Class 8 are not able to be estimated because the severity of the fires in these enclosures are not able to be estimated.

## Classes $9 a$ and $9 b$

The maximum enclosure size for class 9 a is 6 m by 20 m by 3.0 m high and those for class 9 b are 5 m by 20 m by 3.0 m high and 30 m by 50 m by 5 m high.

The minimum ventilation for Class 9 a is by a single opening 6 m wide by 1.58 m high in the end wall. The corresponding estimated fire duration is 145 minutes which would require an FRL of 180 minutes.

Alternative vent sizes for class 9 a are 20 m by 1.47 and 2.50 m high, and for these cases the fire durations are estimated as 39 and 16 minutes respectively. With an assumed maximum temperature of $1100^{\circ} \mathrm{C}$ an estimated FRL for both cases is 60 minutes.

The minimum ventilation for Class 9 b by an opening 5.0 m wide by 1.64 m high is estimated (Table A2), with a fire load density of $44.1 \mathrm{~kg} / \mathrm{m}^{2}$ (wood equivalent), to have a fire duration of 302 minutes. No FRL estimate can be made because of the degree of extrapolation required.

Alternative vents sizes are 20 m by 1.35 and 2.31 m high for class 9 b , and for these cases the fire durations are estimated as 79 and 32 minutes respectively. With an assumed maximum temperature of $1100^{\circ} \mathrm{C}$ elements with an FRL of 90 minutes for the first case and 60 minutes for the second case are estimated to be satisfactory.

The FRLs required for the larger enclosures considered appropriate for Class 9 b are not able to be estimated because the severity of the fires in these enclosures are not able to be estimated.

These results are summarised in the following tables.
Table 3 Required FRL to Cover Evacuation Time

| Class | 1 Storey | 2 to 5 Storeys | $\boldsymbol{D}$ Storeys <br> (n storeys) | $\mathbf{1 0}$ <br> Storeys | $\mathbf{2 0}$ <br> Storeys | $\mathbf{3 0}$ <br> Storeys | $\mathbf{5 0}$ <br> Storeys |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{2}$ | 60 | 90 | 90 | 90 | 90 | 90 | 120 |
| 3a | extended | extended | extended | - | - | - | - |
| 3b | 60 | 90 | 90 | 90 | 90 | 90 | 120 |
| $\mathbf{4}$ | 60 | 90 | 90 | 90 | 90 | 90 | 120 |
| $\mathbf{5}$ | 60 | 90 | 90 | 90 | 90 |  |  |
| $\mathbf{6}$ | 60 | 90 | - | - | - | - | - |
| 7 carpark | - | - | - | - | - | - | - |
| 7 other | - | - | - | - | - | - | - |
| 8 purpose built | - | - | - | - | - | - | - |
| 8 general purpose | - | - | - | - | - | - | - |
| 9a | extended | extended | extended | - | - | - | - |
| 9b school | 60 | 90 | - | - | - | - | - |
| 9b disco or nightclub | 60 | 90 | - | - | - | - | - |
| 9b exhibition hall | 60 | 90 | - | - | - | - | - |
| 9b theatre or public <br> hall with stage | 60 | 90 | - | - | - | - | - |
| 9b theatre or public <br> hall without stage | 60 | 90 | - | - | - | - | - |
| 9b other | 60 | 90 | - | - | - | - | - |

Table 4 Required FRL to Cover Burnout

| Class | W (m) | D (m) | H (m) | w (m) | h (m) | $\begin{gathered} \text { FLD } \\ \left(\mathrm{kg} / \mathbf{m}^{2}\right) \end{gathered}$ | $\begin{gathered} \mathbf{t 5 0 0} \\ \text { (minutes) } \end{gathered}$ | $\begin{gathered} \text { FRL } \\ \text { (minutes) } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $2 \& 4$ | 10 | 20 | 2.4 | 10 | 1.87 | 58.8 | 321 | - |
| $2 \& 4$ | 20 | 10 | 2.4 | 20 | 1.37 | 58.8 | 104 | 120 |
| $2 \& 4$ | 20 | 10 | 2.4 | 20 | 2.10 | 58.8 | 50 | 90 |
| 3a | 4 | 8 | 2.4 | 4 | 1.14 | 29.4 | 156 | 180 |
| 3a | 8 | 4 | 2.4 | 8 | 1.58 | 29.4 | 39 | 60 |
| 3a | 8 | 4 | 2.4 | 8 | 2.40 | 29.4 | 19 | 60 |
| 3b | 4 | 8 | 2.4 | 4 | 0.72 | 29.4 | 343 | - |
| 3b | 8 | 4 | 2.4 | 8 | 0.94 | 29.4 | 94 | 120 |
| 3b | 8 | 4 | 2.4 | 8 | 1.49 | 29.4 | 43 | 60 |
| 3b | 30 | 50 | 5 | 30 | 1.13 | 29.4 |  | - |
| 3b | 50 | 30 | 5 | 50 | 2.04 | 29.4 |  | - |
| 3b | 50 | 30 | 5 | 50 | 4.08 | 29.4 |  | - |
| 5 | 4 | 8 | 3 | 4 | 0.77 | 47.1 | 484 | - |
| 5 | 8 | 4 | 3 | 8 | 1.23 | 47.1 | 96 | 120 |
| 5 | 8 | 4 | 3 | 8 | 2.34 | 47.1 | 32 | 60 |
| 5 | 60 | 60 | 3 | 60 | 1.52 | 47.1 |  | - |
| 5 | 60 | 60 | 3 | 60 | 3 | 47.1 |  | - |
| 5 | 60 | 60 | 3 | 60 | 3 | 47.1 |  | - |
| 6 | 5 | 20 | 3 | 5 | 1.64 | 58.8 | 402 | - |
| 6 | 20 | 5 | 3 | 20 | 1.35 | 58.8 | 106 | 120 |
| 6 | 20 | 5 | 3 | 20 | 2.31 | 58.8 | 43 | 60 |
| 6 | 50 | 100 | 5 | 50 | 3.09 | 58.8 |  | - |
| 6 | 100 | 50 | 5 | 100 | 4.63 | 58.8 |  | - |
| 6 | 100 | 50 | 5 | 100 | 5 | 58.8 |  | - |
| 7a | 5 | 20 | 2.4 | 5 | 1.18 | 11.8 | 141 | 180 |
| 7a | 20 | 5 | 2.4 | 20 | 1.37 | 11.8 | 21 | 60 |
| 7a | 20 | 5 | 2.4 | 20 | 2.40 | 11.8 | 8 | 30 |
| 7a | 50 | 100 | 2.4 | 50 | 2.4 | 11.8 |  | - |
| 7a | 100 | 50 | 2.4 | 100 | 2.4 | 11.8 |  | - |
| 7a | 100 | 50 | 2.4 | 100 | 2.4 | 11.8 |  | - |
| 7b | 5 | 20 | 4 | 5 | 1.79 | 323.5 | 1902 | - |
| 7b | 20 | 5 | 4 | 20 | 1.37 | 323.5 | 499 | - |
| 7b | 20 | 5 | 4 | 20 | 2.40 | 323.5 | 202 | 240 |
| 7b | 50 | 100 | 6 | 50 | 2.89 | 323.5 |  |  |
| 7b | 100 | 50 | 6 | 100 | 4.34 | 323.5 |  |  |
| 7b | 100 | 50 | 6 | 100 | 6 | 323.5 |  |  |
| 8 | 5 | 20 | 4 | 5 | 1.79 | 35.3 | 208 | 240 |
| 8 | 20 | 5 | 4 | 20 | 1.48 | 35.3 | 54 | 90 |
| 8 | 20 | 5 | 4 | 20 | 2.52 | 35.3 | 22 | 60 |
| 8 | 50 | 100 | 6 | 50 | 2.89 | 35.3 |  |  |
| 8 | 100 | 50 | 6 | 100 | 4.34 | 35.3 |  |  |
| 8 | 100 | 50 | 6 | 100 | 6 | 35.3 |  |  |
| 9a | 6 | 20 | 3 | 6 | 1.58 | 20.6 | 145 | 180 |
| 9a | 20 | 6 | 3 | 20 | 1.47 | 20.6 | 39 | 60 |
| 9a | 20 | 6 | 3 | 20 | 2.50 | 20.6 | 16 | 60 |
| 9b | 5 | 20 | 3 | 5 | 1.64 | 44.1 | 302 | - |
| 9 b | 20 | 5 | 3 | 20 | 1.35 | 44.1 | 79 | 90 |
| 9b | 20 | 5 | 3 | 20 | 2.31 | 44.1 | 32 | 60 |
| 9b | 30 | 50 | 5 | 30 | 1.70 | 44.1 |  |  |
| 9b | 50 | 30 | 5 | 50 | 3.06 | 44.1 |  |  |
| 9 b | 50 | 30 | 5 | 50 | 5 | 44.1 |  |  |

## Conclusion

The FRLs required in the cases considered are highly dependent on the three factors considered in their derivation (fire load density, enclosure area and vent size) and on the temperature assumed to occur. In addition, the assumption of an $1100^{\circ} \mathrm{C}$ temperature (which it is acknowledged is in the upper range of temperatures measured in realistic fire tests in enclosures) results in a quite severe fire when compared with the standard fire test as the furnace temperature only gets to this level nearly three hours after the commencement of the test.

The three factors considered in the derivation are all important but the size of the enclosure is possibly most important. There are two (possibly three, if the $1100^{\circ} \mathrm{C}$ temperature is considered also) extreme factors involved in the calculations on which the FRLs are based: the enclosures are the largest considered likely for the occupancies and the ventilation is the minimum considered likely. Both of these lead to longer durations, and therefore the durations estimated must be towards the upper extreme of those that might occur in practice.

For a specific building design a calculation using the methods used above but with the actual enclosure size and ventilation conditions would lead to considerably lower requirements. This can be accomplished by calculating the fire duration and then using Table 4.

The following table is an example of a possible presentation to cover a range of enclosure sizes and ventilation conditions. It is for Classes $2 \& 4$ and includes the values in Table 4.

Table 5 Example Table Covering a Range of Enclosure and Vent Sizes

| Enclosure <br> Size | Ventilation |  |
| :--- | :---: | :---: |
|  | Small <br> $(10 \mathrm{~m} \times 1.2 \mathrm{~m})$ | Large <br> $(10 \mathrm{~m} \times 2.4 \mathrm{~m})$ |
| Large <br> $(10 \mathrm{~m} \times 20 \mathrm{~m})$ | 771 |  |
| (FRL ) | 223 |  |
| (FRL ) |  |  |
| Medium | 386 | 112 |
| $(5 \mathrm{~m} \times 10 \mathrm{~m})$ | (FRL $)$ | (FRL 120) |
| Small <br> $3 \mathrm{~m} \times 5 \mathrm{~m})$ | 193 | 56 |
| (FRL $)$ | (FRL 90) |  |

This estimate may also be made slightly more approximately by using the following formulae:

$$
\begin{align*}
& t=\frac{F L D \times D}{18.7 \times h^{1.79}}  \tag{1}\\
& F R L \geq \frac{(t+1230)}{67} \tag{2}
\end{align*}
$$

For the same example as in Table 5 above these formulae would lead to the results in the following table (Table 6). In this table the FRLs are expressed in the calculated number of minutes rather than in the standard FRL periods ( $60,90,120$, etc)

Table 6 Example Covering a Range of Enclosure and Vent Sizes Based on Equations

| Enclosure Size | Ventilation |  |
| :---: | :---: | :---: |
|  | $\begin{gathered} \text { Small } \\ (10 \mathrm{~m} \times 1.2 \mathrm{~m}) \end{gathered}$ | $\begin{gathered} \text { Large } \\ (10 \mathrm{~m} \times 2.4 \mathrm{~m}) \end{gathered}$ |
| Large $(10 \mathrm{~m} \times 20 \mathrm{~m})$ | $\begin{gathered} 770 \\ \text { (FRL 708) } \end{gathered}$ | $\begin{gathered} 221 \\ \text { (FRL 216) } \end{gathered}$ |
| $\begin{aligned} & \text { Medium } \\ & (5 \mathrm{~m} \times 10 \mathrm{~m}) \\ & \hline \end{aligned}$ | 385 (FRL 363) | 111 (FRL 117) |
| Small $3 \mathrm{mx} 5 \mathrm{~m})$ | $\begin{gathered} 192 \\ \text { (FRL 191) } \end{gathered}$ | $\begin{gathered} 55 \\ \text { (FRL 68) } \\ \hline \end{gathered}$ |

(Note in this table that for fire durations up to about 160 minutes the FRL period is slightly greater than the fire duration, but for those above about 200 minutes the FRL period is less than the fire duration. This is because the standard fire test temperature is about $1100^{\circ} \mathrm{C}$ at 180 minutes.)

It can be seen that the results in the two tables are very similar.
It should be noted that many of the FRLs recommended above are greater than those currently required by the BCA. It is not recommended that FRLs in the BCA be increased as there is no indication in the fire record that the current FRLs are unsatisfactory. Indeed, the general opinion seems to be that, if anything, FRLs are too high. As the estimates above are highly dependent on the enclosure size, fire load density and ventilation assumed it may be that reduced values of these parameters might be appropriate, and that further consideration of these values by ABCB would be sensible.

Table 1

| Class | W (m) | D (m) | H (m) | w (m) | h (m) | $\begin{array}{r} \mathrm{FL} \\ \left(\mathrm{~kg} / \mathrm{m}^{2}\right) \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $2 \& 4$ | 5 | 20 | 2.4 | 5 | 1.87 | 34.7 |
| $2 \& 4$ | 5 | 20 | 2.4 | 5 | 1.87 | 58.8 |
| 2 \& 4 | 5 | 20 | 2.4 | 5 | 1.87 | 94.1 |
| 2 \& 4 | 20 | 5 | 2.4 | 20 | 1.37 | 34.7 |
| 2 \& 4 | 20 | 5 | 2.4 | 20 | 1.37 | 58.8 |
| 2 \& 4 | 20 | 5 | 2.4 | 20 | 1.37 | 94.1 |
| 2 \& 4 | 20 | 5 | 2.4 | 20 | 2.10 | 34.7 |
| $2 \& 4$ | 20 | 5 | 2.4 | 20 | 2.10 | 58.8 |
| $2 \& 4$ | 20 | 5 | 2.4 | 20 | 2.10 | 94.1 |
| 3a | 4 | 8 | 2.4 | 4 | 1.14 | 17.6 |
| 3a | 4 | 8 | 2.4 | 4 | 1.14 | 29.4 |
| 3a | 4 | 8 | 2.4 | 4 | 1.14 | 45.9 |
| 3a | 8 | 4 | 2.4 | 8 | 1.58 | 17.6 |
| 3a | 8 | 4 | 2.4 | 8 | 1.58 | 29.4 |
| 3a | 8 | 4 | 2.4 | 8 | 1.58 | 45.9 |
| 3a | 8 | 4 | 2.4 | 8 | 2.40 | 17.6 |
| 3a | 8 | 4 | 2.4 | 8 | 2.40 | 29.4 |
| 3a | 8 | 4 | 2.4 | 8 | 2.40 | 45.9 |
| 3b | 4 | 8 | 2.4 | 4 | 0.72 | 17.6 |
| 3b | 4 | 8 | 2.4 | 4 | 0.72 | 29.4 |
| 3b | 4 | 8 | 2.4 | 4 | 0.72 | 45.9 |
| 3b | 8 | 4 | 2.4 | 8 | 0.94 | 17.6 |
| 3b | 8 | 4 | 2.4 | 8 | 0.94 | 29.4 |
| 3b | 8 | 4 | 2.4 | 8 | 0.94 | 45.9 |
| 3b | 8 | 4 | 2.4 | 8 | 1.49 | 17.6 |
| 3b | 8 | 4 | 2.4 | 8 | 1.49 | 29.4 |
| 3b | 8 | 4 | 2.4 | 8 | 1.49 | 45.9 |
| 3b | 30 | 50 | 5 | 30 | 1.86 | 17.6 |
| 3b | 30 | 50 | 5 | 30 | 1.86 | 29.4 |
| 3b | 30 | 50 | 5 | 30 | 1.86 | 45.9 |
| 3b | 50 | 30 | 5 | 50 | 2.75 | 17.6 |
| 3b | 50 | 30 | 5 | 50 | 2.75 | 29.4 |
| 3b | 50 | 30 | 5 | 50 | 2.75 | 45.9 |
| 3b | 50 | 30 | 5 | 50 | 4.37 | 17.6 |
| 3b | 50 | 30 | 5 | 50 | 4.37 | 29.4 |
| 3b | 50 | 30 | 5 | 50 | 4.37 | 45.9 |


| Class | W (m) | D (m) | H (m) | w (m) | h (m) | $\begin{array}{r} \text { FL } \\ \left(\mathrm{kg} / \mathrm{m}^{2}\right) \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | 4 | 8 | 3 | 4 | 0.77 | 16.5 |
| 5 | 4 | 8 | 3 | 4 | 0.77 | 47.1 |
| 5 | 4 | 8 | 3 | 4 | 0.77 | 100.0 |
| 5 | 8 | 4 | 3 | 8 | 1.23 | 16.5 |
| 5 | 8 | 4 | 3 | 8 | 1.23 | 47.1 |
| 5 | 8 | 4 | 3 | 8 | 1.23 | 100.0 |
| 5 | 8 | 4 | 3 | 8 | 2.34 | 16.5 |
| 5 | 8 | 4 | 3 | 8 | 2.34 | 47.1 |
| 5 | 8 | 4 | 3 | 8 | 2.34 | 100.0 |
| 5 | 60 | 60 | 3 | 60 | 1.91 | 16.5 |
| 5 | 60 | 60 | 3 | 60 | 1.91 | 47.1 |
| 5 | 60 | 60 | 3 | 60 | 1.91 | 100.0 |
| 5 | 60 | 60 | 3 | 60 | 3.00 | 16.5 |
| 5 | 60 | 60 | 3 | 60 | 3.00 | 47.1 |
| 5 | 60 | 60 | 3 | 60 | 3.00 | 100.0 |
| 5 | 60 | 60 | 3 | 60 | 3.00 | 16.5 |
| 5 | 60 | 60 | 3 | 60 | 3.00 | 47.1 |
| 5 | 60 | 60 | 3 | 60 | 3.00 | 100.0 |
| 6 | 5 | 20 | 3 | 5 | 1.64 | 24.1 |
| 6 | 5 | 20 | 3 | 5 | 1.64 | 58.8 |
| 6 | 5 | 20 | 3 | 5 | 1.64 | 111.8 |
| 6 | 20 | 5 | 3 | 20 | 1.35 | 24.1 |
| 6 | 20 | 5 | 3 | 20 | 1.35 | 58.8 |
| 6 | 20 | 5 | 3 | 20 | 1.35 | 111.8 |
| 6 | 20 | 5 | 3 | 20 | 2.31 | 24.1 |
| 6 | 20 | 5 | 3 | 20 | 2.31 | 58.8 |
| 6 | 20 | 5 | 3 | 20 | 2.31 | 111.8 |
| 6 | 50 | 100 | 5 | 50 | 3.69 | 24.1 |
| 6 | 50 | 100 | 5 | 50 | 3.69 | 58.8 |
| 6 | 50 | 100 | 5 | 50 | 3.69 | 111.8 |
| 6 | 100 | 50 | 5 | 100 | 4.84 | 24.1 |
| 6 | 100 | 50 | 5 | 100 | 4.84 | 58.8 |
| 6 | 100 | 50 | 5 | 100 | 4.84 | 111.8 |
| 6 | 100 | 50 | 5 | 100 | 6.00 | 24.1 |
| 6 | 100 | 50 | 5 | 100 | 6.00 | 58.8 |
| 6 | 100 | 50 | 5 | 100 | 6.00 | 111.8 |


| Class | W (m) | D (m) | H (m) | w (m) | h (m) | $\begin{array}{r} \mathrm{FL} \\ \left(\mathrm{~kg} / \mathbf{m}^{2}\right) \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7a | 5 | 20 | 2.4 | 5 | 1.18 | 7.1 |
| 7 a | 5 | 20 | 2.4 | 5 | 1.18 | 11.8 |
| 7 a | 5 | 20 | 2.4 | 5 | 1.18 | 18.2 |
| 7 a | 20 | 5 | 2.4 | 20 | 1.37 | 7.1 |
| 7 a | 20 | 5 | 2.4 | 20 | 1.37 | 11.8 |
| 7 a | 20 | 5 | 2.4 | 20 | 1.37 | 18.2 |
| 7 a | 20 | 5 | 2.4 | 20 | 2.40 | 7.1 |
| 7 a | 20 | 5 | 2.4 | 20 | 2.40 | 11.8 |
| 7a | 20 | 5 | 2.4 | 20 | 2.40 | 18.2 |
| 7a | 50 | 100 | 2.4 | 50 | 2.40 | 7.1 |
| 7a | 50 | 100 | 2.4 | 50 | 2.40 | 11.8 |
| 7 a | 50 | 100 | 2.4 | 50 | 2.40 | 18.2 |
| 7 a | 100 | 50 | 2.4 | 100 | 2.40 | 7.1 |
| 7 a | 100 | 50 | 2.4 | 100 | 2.40 | 11.8 |
| 7 a | 100 | 50 | 2.4 | 100 | 2.40 | 18.2 |
| 7 a | 100 | 50 | 2.4 | 100 | 2.40 | 7.1 |
| 7a | 100 | 50 | 2.4 | 100 | 2.40 | 11.8 |
| 7a | 100 | 50 | 2.4 | 100 | 2.40 | 18.2 |
| 7 b | 5 | 20 | 4 | 5 | 1.79 | 94.1 |
| 7b | 5 | 20 | 4 | 5 | 1.79 | 323.5 |
| 7 b | 5 | 20 | 4 | 5 | 1.79 | 764.7 |
| 7b | 20 | 5 | 4 | 20 | 1.48 | 94.1 |
| 7 b | 20 | 5 | 4 | 20 | 1.48 | 323.5 |
| 7 b | 20 | 5 | 4 | 20 | 1.48 | 764.7 |
| 7 b | 20 | 5 | 4 | 20 | 2.52 | 94.1 |
| 7 b | 20 | 5 | 4 | 20 | 2.52 | 323.5 |
| 7 b | 20 | 5 | 4 | 20 | 2.52 | 764.7 |
| 7 b | 50 | 100 | 6 | 50 | 3.69 | 94.1 |
| 7 b | 50 | 100 | 6 | 50 | 3.69 | 323.5 |
| 7 b | 50 | 100 | 6 | 50 | 3.69 | 764.7 |
| 7 b | 100 | 50 | 6 | 100 | 4.84 | 94.1 |
| 7 b | 100 | 50 | 6 | 100 | 4.84 | 323.5 |
| 7 b | 100 | 50 | 6 | 100 | 4.84 | 764.7 |
| 7 b | 100 | 50 | 6 | 100 | 6.00 | 94.1 |
| 7 b | 100 | 50 | 6 | 100 | 6.00 | 323.5 |
| 7 b | 100 | 50 | 6 | 100 | 6.00 | 764.7 |
| 8 | 5 | 20 | 4 | 5 | 1.79 | 10.0 |
| 8 | 5 | 20 | 4 | 5 | 1.79 | 35.3 |
| 8 | 5 | 20 | 4 | 5 | 1.79 | 82.4 |
| 8 | 20 | 5 | 4 | 20 | 1.48 | 10.0 |
| 8 | 20 | 5 | 4 | 20 | 1.48 | 35.3 |
| 8 | 20 | 5 | 4 | 20 | 1.48 | 82.4 |
| 8 | 20 | 5 | 4 | 20 | 2.52 | 10.0 |
| 8 | 20 | 5 | 4 | 20 | 2.52 | 35.3 |
| 8 | 20 | 5 | 4 | 20 | 2.52 | 82.4 |
| 8 | 50 | 100 | 6 | 50 | 3.69 | 10.0 |
| 8 | 50 | 100 | 6 | 50 | 3.69 | 35.3 |
| 8 | 50 | 100 | 6 | 50 | 3.69 | 82.4 |
| 8 | 100 | 50 | 6 | 100 | 4.84 | 10.0 |
| 8 | 100 | 50 | 6 | 100 | 4.84 | 35.3 |
| 8 | 100 | 50 | 6 | 100 | 4.84 | 82.4 |
| 8 | 100 | 50 | 6 | 100 | 6.00 | 10.0 |
| 8 | 100 | 50 | 6 | 100 | 6.00 | 35.3 |
| 8 | 100 | 50 | 6 | 100 | 6.00 | 82.4 |


| Class | $\mathbf{W}(\mathbf{m})$ | $\mathbf{D}(\mathbf{m})$ | $\mathbf{H}(\mathbf{m})$ | $\mathbf{w}(\mathbf{m})$ | $\mathbf{h}(\mathbf{m})$ | $\mathbf{F L}$ <br> $\left(\mathbf{k g} / \mathbf{m}^{2}\right)$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 9 a | 6 | 20 | 3 | 6 | 1.58 | 11.8 |
| 9 a | 6 | 20 | 3 | 6 | 1.58 | 20.6 |
| 9 a | 6 | 20 | 3 | 6 | 1.58 | 32.4 |
| 9 a | 20 | 6 | 3 | 20 | 1.47 | 11.8 |
| 9 a | 20 | 6 | 3 | 20 | 1.47 | 20.6 |
| 9 a | 20 | 6 | 3 | 20 | 1.47 | 32.4 |
| 9 a | 20 | 6 | 3 | 20 | 2.50 | 11.8 |
| 9 a | 20 | 6 | 3 | 20 | 2.50 | 20.6 |
| 9 a | 20 | 6 | 3 | 20 | 2.50 | 32.4 |
| 9 b | 5 | 20 | 3 | 5 | 1.64 | 25.9 |
| 9 b | 5 | 20 | 3 | 5 | 1.64 | 44.1 |
| 9 b | 5 | 20 | 3 | 5 | 1.64 | 70.6 |
| 9 b | 20 | 5 | 3 | 20 | 1.35 | 25.9 |
| 9 b | 20 | 5 | 3 | 20 | 1.35 | 44.1 |
| 9 b | 20 | 5 | 3 | 20 | 1.35 | 70.6 |
| 9 b | 20 | 5 | 3 | 20 | 2.31 | 25.9 |
| 9 b | 20 | 5 | 3 | 20 | 2.31 | 44.1 |
| 9 b | 20 | 5 | 3 | 20 | 2.31 | 70.6 |
| 9 b | 30 | 50 | 5 | 30 | 2.44 | 25.9 |
| 9 b | 30 | 50 | 5 | 30 | 2.44 | 44.1 |
| 9 b | 30 | 50 | 5 | 30 | 2.44 | 70.6 |
| 9 b | 50 | 30 | 5 | 50 | 3.61 | 25.9 |
| 9 b | 50 | 30 | 5 | 50 | 3.61 | 44.1 |
| 9 b | 50 | 30 | 5 | 50 | 3.61 | 70.6 |
| 9 b | 50 | 30 | 5 | 50 | 5.00 | 25.9 |
| 9 b | 50 | 30 | 5 | 50 | 5.00 | 44.1 |
| 9 b | 50 | 30 | 5 | 50 | 5.00 | 70.6 |

## Table 2

The figures in the following table are the estimated failure time in seconds for the idealised temperature - time relationships of the temperatures and durations shown, for elements of the specified FRLs.

The temperature profile for the design fires are the specified (maximum) temperature (Tmax) at the start of the fire with the temperature falling linearly to $500{ }^{\circ} \mathrm{C}$ at the time corresponding to the duration.

The duration, in seconds, is given in the column marked t 500 .

An entry of "Nil" means no failure is predicted.
The remaining columns represent each of the structural and barrier elements considered as follows:
SSW Steel stud wall
MW Masonry wall
CW Concrete wall
CB Concrete beam
CC Concrete column
SB Steel beam
SC Steel column
MSD Insulated steel duct

FRL 30



| Tmax | 1200 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | \|500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil | 120 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 1800 | 540 | 120 | 1800 | Nil | Nil | Nil | Nil | Nil |
|  | 2400 | 480 | 120 | 1680 | 1440 | 1440 | 2400 | Nil | Nil |
|  | 3000 | 480 | 120 | 1620 | 1140 | 1200 | 1980 | 2040 | 1560 |
|  | 3600 | 480 | 120 | 1620 | 1080 | 1140 | 1860 | 1860 | 1380 |
|  | 4200 | 480 | 120 | 1560 | 1020 | 1080 | 1800 | 1800 | 1320 |
|  | 4800 | 480 | 120 | 1560 | 960 | 1080 | 1740 | 1740 | 1320 |
|  | 5400 | 480 | 120 | 1560 | 960 | 1020 | 1740 | 1680 | 1260 |
|  | 6000 | 480 | 120 | 1560 | 960 | 1020 | 1680 | 1680 | 1260 |
|  | 6600 | 480 | 120 | 1560 | 960 | 1020 | 1680 | 1620 | 1260 |
|  | 7200 | 480 | 120 | 1560 | 900 | 1020 | 1680 | 1620 | 1200 |
|  | 7800 | 480 | 120 | 1560 | 900 | 1020 | 1680 | 1620 | 1200 |
|  | 8400 | 480 | 120 | 1500 | 900 | 1020 | 1620 | 1560 | 1200 |
|  | 9000 | 480 | 120 | 1500 | 900 | 1020 | 1620 | 1560 | 1200 |
|  | 9600 | 480 | 120 | 1500 | 900 | 960 | 1620 | 1560 | 1200 |
|  | 10200 | 480 | 120 | 1500 | 900 | 960 | 1620 | 1560 | 1200 |
|  | 10800 | 480 | 120 | 1500 | 900 | 960 | 1620 | 1560 | 1200 |
| Tmax | 1100 |  |  |  |  |  |  |  |  |
|  | \|500 | Ssw | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil | 240 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 1800 | Nil | 180 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 2400 | Nil | 180 | 1860 | Nil | Nil | Nil | Nil | Nil |
|  | 3000 | 600 | 180 | 1800 |  | 1740 | 2280 | 2520 | Nil |
|  | 3600 | 540 | 180 | 1740 | 1440 | 1500 | 2100 | 2160 | 1860 |
|  | 4200 | 540 | 180 | 1740 | 1320 | 1380 | 2040 | 2040 | 1620 |
|  | 4800 | 540 | 180 | 1680 | 1260 | 1320 | 1980 | 1980 | 1560 |
|  | 5400 | 540 | 180 | 1680 | 1200 | 1260 | 1920 | 1920 | 1500 |
|  | 6000 | 540 | 180 | 1680 | 1200 | 1260 | 1920 | 1860 | 1500 |
|  | 6600 | 540 | 180 | 1680 | 1200 | 1260 | 1860 | 1860 | 1440 |
|  | 7200 | 540 | 180 | 1680 | 1140 | 1200 | 1860 | 1860 | 1440 |
|  | 7800 | 540 | 180 | 1680 | 1140 | 1200 | 1860 | 1800 | 1440 |
|  | 8400 | 540 | 180 | 1680 | 1140 | 1200 | 1860 | 1800 | 1440 |
|  | 9000 | 540 | 180 | 1680 | 1140 | 1200 | 1800 | 1800 | 1380 |
|  | 9600 | 540 | 180 | 1680 | 1140 | 1200 | 1800 | 1800 | 1380 |
|  | 10200 | 540 | 180 | 1620 | 1140 | 1200 | 1800 | 1740 | 1380 |
|  | 10800 | 540 | 180 | 1620 | 1140 | 1200 | 1800 | 1740 | 1380 |

## Tmax

| \|500 | \|SSW | MW | CW | CB | CC | SB | SC | MSD |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 600 | Nil |
| 1200 | Nil |
| 1800 | Nil |
| 2400 | Nil | 420 | 2160 | Nil | Nil | Nil | Nil | Nil |
| 3000 | Nil | 360 | 2040 | Nil | Nil | 2820 | Nil | Nil |
| 3600 | Nil | 300 | 1980 | Nil | Nil | 2460 | 2700 | Nil |
| 4200 | Nil | 300 | 1920 | Nil | 2100 | 1340 | 2460 | Nil |
| 4800 | 2340 | 300 | 1920 | 1920 | 1860 | 2220 | 2340 | 2220 |
| 5400 | 2280 | 300 | 1860 | 1740 | 1740 | 2220 | 2220 | 2040 |
| 6000 | 2220 | 300 | 1860 | 1680 | 1680 | 2160 | 2220 | 1920 |
| 6600 | 2160 | 300 | 1860 | 1620 | 1620 | 2100 | 2160 | 1860 |
| 7200 | 2100 | 300 | 1860 | 1560 | 1620 | 2100 | 2100 | 1800 |
| 7800 | 2100 | 300 | 1860 | 1560 | 1560 | 2100 | 2100 | 1800 |
| 8400 | 2040 | 300 | 1860 | 1560 | 1560 | 2040 | 2100 | 1740 |
| 9000 | 780 | 300 | 1800 | 1500 | 1560 | 2040 | 2040 | 1740 |
| 9600 | 720 | 300 | 1800 | 1500 | 1560 | 2040 | 2040 | 1740 |
| 10200 | 720 | 300 | 1800 | 1500 | 1500 | 2040 | 2040 | 1680 |
| 10800 | 720 | 300 | 1800 | 1500 | 1500 | 2040 | 2040 | 1680 |

Tmax

| t500 | Ssw | MW | CW | CB | CC | SB | SC | MSD |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 600 | Nil |
| 1200 | Nil |
| 1800 | Nil |
| 2400 | Nil |
| 3000 | Nil | Nil | 2400 | Nil | Nil | Nil | Nil | Nil |
| 3600 | Nil | Nil | 2280 | Nil | Nil | 3000 | Nil | Nil |
| 4200 | Nil | Nil | 2220 | Nil | Nil | 2760 | 3060 | Nil |
| 4800 | Nil | Nil | 2220 | Nil | Nil | 2640 | 2820 | Nil |
| 5400 | Nil | 4800 | 2160 | Nil | Nil | 2580 | 2700 | Nil |
| 6000 | Nil | 4800 | 2160 | Nil | 2940 | 2520 | 2640 | Nil |
| 6600 | 2700 | 4740 | 2100 | 3120 | 2640 | 2460 | 2580 | Nil |
| 7200 | 2640 | 4680 | 2100 | 2700 | 2460 | 2460 | 2520 | Nil |
| 7800 | 2580 | 4680 | 2100 | 2580 | 2400 | 2400 | 2520 | 2760 |
| 8400 | 2520 | 4620 | 2100 | 2460 | 2340 | 2400 | 2460 | 2580 |
| 9000 | 2460 | 4620 | 2100 | 2340 | 2280 | 2400 | 2460 | 2460 |
| 9600 | 2460 | 4620 | 2100 | 2280 | 2220 | 2340 | 2460 | 2400 |
| 10200 | 2460 | 4560 | 2100 | 2280 | 2160 | 2340 | 2400 | 2400 |
| 10800 | 2400 | 4560 | 2040 | 2220 | 2160 | 2340 | 2400 | 2340 |

FRL 60

| Tmax | 1200 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil | 120 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 1800 | Nil | 120 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 2400 | Nil | 120 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 3000 | Nil | 120 | 2820 | Nil | Nil | Nil | Nil | Nil |
|  | 3600 | 900 | 120 | 2700 | Nil | Nil | Nil | Nil | Nil |
|  | 4200 | 840 | 120 | 2640 | 2100 | 2220 | 3000 | 3120 | Nil |
|  | 4800 | 840 | 120 | 2580 | 1920 | 2040 | 2820 | 2880 | 2520 |
|  | 5400 | 840 | 120 | 2520 | 1860 | 1980 | 2700 | 2700 | 2340 |
|  | 6000 | 780 | 120 | 2520 | 1800 | 1920 | 2580 | 2640 | 2220 |
|  | 6600 | 780 | 120 | 2520 | 1740 | 1860 | 2580 | 2580 | 2160 |
|  | 7200 | 780 | 120 | 2460 | 1740 | 1800 | 2520 | 2520 | 2160 |
|  | 7800 | 780 | 120 | 2460 | 1680 | 1800 | 2460 | 2460 | 2100 |
|  | 8400 | 780 | 120 | 2460 | 1680 | 1800 | 2460 | 2460 | 2100 |
|  | 9000 | 780 | 120 | 2460 | 1680 | 1740 | 2400 | 2460 | 2040 |
|  | 9600 | 780 | 120 | 2460 | 1680 | 1740 | 2400 | 2400 | 2040 |
|  | 10200 | 780 | 120 | 2460 | 1620 | 1740 | 2400 | 2400 | 2040 |
|  | 10800 | 780 | 120 | 2460 | 1620 | 1740 | 2400 | 2400 | 1980 |

Tmax 1100

| \|500 | Ssw |  | CW | CB | CC | SB | SC | MSD |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 600 | Nil |
| 1200 | Nil | 240 | Nil | Nil | Nil | Nil | Nil | Nil |
| 1800 | Nil | 180 | Nil | Nil | Nil | Nil | Nil | Nil |
| 2400 | Nil | 180 | Nil | Nil | Nil | Nil | Nil | Nil |
| 3000 | Nil | 180 | Nil | Nil | Nil | Nil | Nil | Nil |
| 3600 | Nil | 180 | 3000 | Nil | Nil | Nil | Nil | Nil |
| 4200 | Nil | 180 | 2880 | Nil | Nil | 3660 | 3960 | Nil |
| 4800 | Nil | 180 | 2820 | 2760 | 3120 | 3300 | 3420 | Nil |
| 5400 | Nil | 180 | 2760 | 2460 | 2640 | 3120 | 3180 | 3300 |
| 6000 | 1080 | 180 | 2760 | 2280 | 2460 | 3000 | 3060 | 2880 |
| 6600 | 1020 | 180 | 2700 | 2220 | 2340 | 2880 | 2940 | 2700 |
| 7200 | 960 | 180 | 2700 | 2160 | 2280 | 2820 | 2880 | 2580 |
| 7800 | 960 | 180 | 2700 | 2100 | 2220 | 2820 | 2820 | 2520 |
| 8400 | 960 | 180 | 2700 | 2100 | 2160 | 2760 | 2820 | 2460 |
| 9000 | 960 | 180 | 2640 | 2040 | 2160 | 2760 | 2760 | 2460 |
| 9600 | 960 | 180 | 2640 | 2040 | 2100 | 2700 | 2760 | 2400 |
| 10200 | 900 | 180 | 2640 | 1980 | 2100 | 2700 | 2700 | 2400 |
| 10800 | 900 | 180 | 2640 | 1980 | 2100 | 2700 | 2700 | 2340 |

## Tmax

|  | \|500 | Ssw | MW | CW | CB | CC | SB | SC | MSD |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil | 360 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 3600 | Nil | 360 | 3420 | Nil | Nil | Nil | Nil | Nil |
|  | 4200 | Nil | 300 | 3240 | Nil | Nil | Nil | Nil | Nil |
|  | 4800 | Nil | 300 | 3180 | Nil | Nil | 3960 | 4320 | Nil |
|  | 5400 | Nil | 300 | 3120 | Nil | Nil | 3660 | 3840 | Nil |
|  | 6000 | Nil | 300 | 3060 | 3960 | Nil | 3480 | 3600 | Nil |
|  | 6600 | Nil | 300 | 3000 | 3180 | 36900 | 3360 | 3480 | Nil |
|  | 7200 | Nil | 300 | 3000 | 3000 | 3240 | 3300 | 3360 | Nil |
|  | 7800 | Nil | 300 | 3000 | 2880 | 3060 | 3240 | 3300 | 3540 |
|  | 8400 | Nil | 300 | 2940 | 2760 | 2940 | 3180 | 3240 | 3300 |
|  | 9000 | Nil | 300 | 2940 | 2700 | 2880 | 3120 | 3180 | 3180 |
|  | 9600 | Nil | 300 | 2940 | 2640 | 2820 | 3120 | 3180 | 3120 |
|  | 10200 | Nil | 300 | 2940 | 2580 | 2760 | 3060 | 3120 | 3060 |
|  | 10800 | Nil | 300 | 2940 | 2580 | - 2700 | 3060 | 3120 | 3000 |
| Tmax | 900 |  |  |  |  |  |  |  |  |
|  | \|500 | SSW | M ${ }^{\text {W }}$ | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil |
|  | 3600 | Nil |
|  | 4200 | Nil | Nil | 3840 | Nil | Nil | Nil | Nil | Nil |
|  | 4800 | Nil | Nil | 3720 | Nil | Nil | Nil | Nil | Nil |
|  | 5400 | Nil | 4860 | 3600 | Nil | Nil | 4560 | 4980 | Nil |
|  | 6000 | Nil | 4800 | 3540 | Nil | Nil | 4260 | 4500 | Nil |
|  | 6600 | Nil | 4800 | 3480 | Nil | Nil | 4080 | 4260 | Nil |
|  | 7200 | Nil | 4740 | 3420 | Nil | Nil | 3900 | 4080 | Nil |
|  | 7800 | Nil | 4740 | 3420 | Nil | Nil | 3840 | 3960 | Nil |
|  | 8400 | Nil | 4680 | 3360 | 5100 | Nil | 3780 | 3900 | Nil |
|  | 9000 | Nil | 4680 | 3360 | 4440 | 5400 | 3720 | 3840 | Nil |
|  | 9600 | Nil | 4620 | 3360 | 4140 | 4620 | 3660 | 3780 | Nil |
|  | 10200 | Nil | 4620 | 3300 | 3960 | 4320 | 3600 | 3720 | Nil |
|  | 10800 | Nil | 4620 | 3300 | 3780 | 4140 | 3600 | 3660 | Nil |

Tmax $\quad 1200$


Tmax

|  | \|5500 |SSW | MW | CW | CB | CC | SB | SC | MSD |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 600 Nil | Nil |
|  | 1200 Nil | Nil |
|  | 1800 Nil | Nil |
|  | 2400 Nil | Nil |
|  | 3000 Nil | Nil |
|  | 3600 Nil | Nil |
|  | 4200 Nil | Nil |
|  | 4800 Nil | 4800 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 5400 Nil | 4740 | 5280 | Nil | Nil | Nil | Nil | Nil |
|  | 6000 Nil | 540 | 5040 | Nil | Nil | Nil | Nil | Nil |
|  | 6600 Nil | 540 | 4920 | Nil | Nil | Nil | Nil | Nil |
|  | 7200 Nil | 480 | 4860 | Nil | Nil | Nil | Nil | Nil |
|  | 7800 Nil | 480 | 4740 | Nil | Nil | 6540 | 6600 | Nil |
|  | 8400 Nil | 480 | 4680 | Nil | Nil | 6180 | 6180 | Nil |
|  | 9000 Nil | 480 | 4680 | Nil | Nil | 5940 | 5940 | Nil |
|  | 9600 Nil | 480 | 4620 | 6900 | Nil | 5820 | 5760 | Nil |
|  | 10200 Nil | 420 | 4620 | 6000 | Nil | 5640 | 5640 | Nil |
|  | 10800 Nil | 420 | 4560 | 5640 | 6540 | 5580 | 5520 | Nil |
| Tmax | 900 |  |  |  |  |  |  |  |
|  | \|5500 ${ }^{\text {SSW }}$ | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 Nil | Nil |
|  | 1200 Nil | Nil |
|  | 1800 Nil | Nil |
|  | 2400 Nil | Nil |
|  | 3000 Nil | Nil |
|  | 3600 Nil | Nil |
|  | 4200 Nil | Nil |
|  | 4800 Nil | Nil |
|  | 5400 Nil | 5400 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 6000 Nil | 5340 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 6600 Nil | 5280 | 5880 | Nil | Nil | Nil | Nil | Nil |
|  | 7200 Nil | 5280 | 5700 | Nil | Nil | Nil | Nil | Nil |
|  | 7800 Nil | 5220 | 5580 | Nil | Nil | Nil | Nil | Nil |
|  | 8400 Nil | 5160 | 5460 | Nil | Nil | 7800 | 8040 | Nil |
|  | 9000 Nil | 5160 | 5400 | Nil | Nil | 7320 | 7440 | Nil |
|  | 9600 Nil | 5160 | 5340 | Nil | Nil | 7020 | 7080 | Nil |
|  | 10200 Nil | 5100 | 5280 | Nil | Nil | 6780 | 6840 | Nil |
|  | 10800 Nil | 5100 | 5220 |  | Nil | 6660 | 6660 | Nil |


| Tmax | 1200 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | \|5000 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 N | Nil |
|  | 3600 N | Nil |
|  | 4200 N | Nil |
|  | 4800 N | Nil |
|  | 5400 N | Nil |
|  | 6000 N | Nil |
|  | 6600 N | Nil | 6000 | 6240 | Nil | Nil | Nil | Nil | Nil |
|  | 7200 | Nil | 6000 | 6060 | Nil | Nil | Nil | Nil | Nil |
|  | 7800 N | Nil | 5940 | 5940 | Nil | Nil | Nil | Nil | Nil |
|  | 8400 N | Nil | 5940 | 5880 | Nil | Nil | 8280 | Nil | Nil |
|  | 9000 N | Nil | 5880 | 5760 | Nil | Nil | 7560 | 7980 | Nil |
|  | 9600 | Nil | 5880 | 5700 | Nil | Nil | 7200 | 7440 | Nil |
|  | 10200 | Nil | 5880 | 5700 | Nil | 6240 | 6900 | 7080 | Nil |
|  | 10800 | Nil | 5880 | 5640 | Nil | 5820 | 6720 | 6840 | 7860 |
| Tmax | 1100 |  |  |  |  |  |  |  |  |
|  | \|5000 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 N | Nil |
|  | 3000 | Nil |
|  | 3600 N | Nil |
|  | 4200 | Nil |
|  | 4800 N | Nil |
|  | 5400 N | Nil |
|  | 6000 N | Nil |
|  | 6600 N | Nil |
|  | 7200 | Nil | 6480 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 7800 | Nil | 6420 | 6660 | Nil | Nil | Nil | Nil | Nil |
|  | 8400 N | Nil | 6420 | 6480 | Nil | Nil | Nil | Nil | Nil |
|  | 9000 N | Nil | 6360 | 6360 | Nil | Nil | Nil | Nil | Nil |
|  | 9600 N | Nil | 6360 | 6300 | Nil | Nil | 8580 | 9360 | Nil |
|  | 10200 | Nil | 6300 | 6240 | Nil | Nil | 8100 | 8520 | Nil |
|  | 10800 | Nil | 6300 | 6180 | Nil | Nil | 7800 | 8100 | Nil |

Tmax


| Tmax | 1200 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | \|500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil |
|  | 3600 | Nil |
|  | 4200 | Nil |
|  | 4800 | Nil |
|  | 5400 | Nil |
|  | 6000 | Nil |
|  | 6600 | Nil |
|  | 7200 | Nil |
|  | 7800 | Nil |
|  | 8400 | Nil |
|  | 9000 | Nil |
|  | 9600 | Nil | 9360 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 10200 | Nil | 9360 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 10800 | Nil | 9300 | 10380 | Nil | Nil | Nil | Nil | Nil |
| Tmax | 1100 |  |  |  |  |  |  |  |  |
|  | \|500 | SSW | MW | CW | CB | CC | SB | SC | \|MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil |
|  | 3600 | Nil |
|  | 4200 | Nil |
|  | 4800 | Nil |
|  | 5400 | Nil |
|  | 6000 | Nil |
|  | 6600 | Nil |
|  | 7200 | Nil |
|  | 7800 | Nil |
|  | 8400 | Nil |
|  | 9000 | Nil |
|  | 9600 | Nil |
|  | 10200 | Nil | 10140 | Nil | Nil | Nil | Nil | Nil | Nil |
|  | 10800 | Nil | 10080 | Nil | Nil | Nil | Nil | Nil | Nil |


| Tmax | 1000 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | t500 | SSW | MW | CW | CB | CC | SB | SC | MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil |
|  | 3600 | Nil |
|  | 4200 | Nil |
|  | 4800 | Nil |
|  | 5400 | Nil |
|  | 6000 | Nil |
|  | 6600 | Nil |
|  | 7200 | Nil |
|  | 7800 | Nil |
|  | 8400 | Nil |
|  | 9000 | Nil |
|  | 9600 | Nil |
|  | 10200 | Nil |
|  | 10800 | Nil |
| Tmax | 900 |  |  |  |  |  |  |  |  |
|  | \|500 | SSW | MW | CW | CB | CC | SB | SC | \|MSD |
|  | 600 | Nil |
|  | 1200 | Nil |
|  | 1800 | Nil |
|  | 2400 | Nil |
|  | 3000 | Nil |
| 1 hr | 3600 | Nil |
|  | 4200 | Nil |
|  | 4800 | Nil |
|  | 5400 | Nil |
|  | 6000 | Nil |
|  | 6600 | Nil |
| 2 hr | 7200 | Nil |
|  | 7800 | Nil |
|  | 8400 | Nil |
|  | 9000 | Nil |
|  | 9600 | Nil |
|  | 10200 | Nil |
| 3 hr | 10800 | Nil |


[^0]:    ${ }^{1}$ For the purposes of this project, the term "BCA" refers to the Building Code of Australia 1990 Amendment No 9, without state variations

[^1]:    ${ }^{1}$ See page viii for definitions
    FCRC Project 3 Fire Resistance and Non-Combustibility - Part 2

[^2]:    ${ }^{2}$ The walls may be conservatively approximated as blade columns with the smaller column dimension equal to twice the wall thickness.

[^3]:    ${ }^{3}$ See page 2 for further information.
    FCRC Project 3 Fire Resistance and Non-Combustibility - Part 2

[^4]:    ${ }^{4}$ This is only an indicative value from experimental observations. FCRC Project 3 Fire Resistance and Non-Combustibility - Part 2

[^5]:    ${ }^{5}$ Unless the wall is specifically restrained against rotation, the effective height may be taken as the nominal height between the end supports. If the wall is free standing, i.e. the upper end not restrained, then the effective height may be taken as twice the nominal height.

[^6]:    ${ }^{6}$ The steel elastic modulus is used in the calculation of the steel reinforcing strain to determine the location of the neutral axis in the cross-section.

[^7]:    ${ }^{7}$ Collier did not report the thermophysical properties of the test wall.

[^8]:    Temperature $\left({ }^{\circ} \mathrm{C}\right)$

